PRACTICE MANAGEMENT GUIDELINES FOR STRESS ULCER PROPHYLAXIS # EAST Practice Management Guidelines Committee Oscar D. Guillamondegui, MD; Oliver L. Gunter, Jr., MD; John A. Bonadies, MD; Jay E. Coates, DO; Stanley J. Kurek, DO; Marc A. De Moya, MD; Ronald F. Sing, DO; Alan J. Sori MD ## Chairman Oscar D. Guillamondegui, M.D. Vanderbilt University Medical Center Nashville, Tennessee oscar.guillamondegui@vanderbilt.edu ## Vice-Chair Oliver L. Gunter Jr., M.D. Washington University, St. Louis St. Louis, Missouri guntero@wudosis.wustl.edu ## Committee members John A. Bonadies, M.D. Hospital of Saint Raphael New Haven, Connecticut Jay E. Coates, D.O. University of Nevada, Las Vegas Las Vegas, Nevada Stanley J. Kurek, D.O. University of Tennessee Knoxville, Tennessee Marc A. De Moya, M.D. Massachusetts General Hospital Boston, Massachusetts Ronald F. Sing, D.O. Carolinas Medical Center Charlotte, North Carolina Alan J. Sori, M.D. St. Joseph Medical Center Patterson, New Jersey ### **Statement of the Problem** Stress ulcer prophylaxis has historically been a disease process with a high degree of prevalence in the setting of burns and trauma. Multiple protocols exist for prophylaxis of stress ulcer, but there are no universally accepted regiments. This has led to nationwide disorganization in current practice a stress ulcer prophylaxis. There also remains no universal determination of need for stress ulcer prophylaxis in the trauma population. The development of clinically significant gastrointestinal hemorrhage has been associated with significant increase of morbidity and mortality. Increase of mortality may be increased as high as 50%. ## **Process** A MEDLINE search was performed from the years 1990 to present with the following subject words: Gastrointestinal prophylaxis, gastrointestinal hemorrhage, intensive care unit, stress ulcer prophylaxis, trauma, and critical care. All articles pertaining to the critically ill patient were reviewed by 8 trauma intensivists for adequacy and pertinence to the subject. ### **Quality of the references** The initial literature review identified 119 articles. Of these, 73 were removed secondary to inadequate or inappropriate data. A table of evidence was constructed using the 46 references that were identified. *See table 1.* (1-46) The article was entered into a review data sheet that summarized the main conclusions of the study and identified any deficiencies. Reviewers classified each references Class I, Class II or Class III data. The references were classified using methodology established by the Agency for Health Care Policy and Research (AHCPR) of the U. S. Department of Health and Human Services. Additional criteria and specifications were used for Class I articles from a tool described by Oxman et al. (47) Articles were categorized as Class I, Class II or Class III data according to the following definitions: **Class I**: A prospective randomized clinical trial. **Class II**: A prospective non-comparative clinical study or a retrospective analysis based on reliable data. **Class III**: A retrospective case series or database review. The 46 references that met criteria were classified as follows: 27 Class I, 9 Class II, and 10 Class III. Recommendations from the practice management guideline committee were made on the basis of studies that were included in the evidentiary table. The quality assessment instrument applied to references was that developed by the Brain Trauma Foundation and subsequently adopted by the EAST Practice Management Guidelines Committee. (48) Recommendations were categorized based on the class of data from which they were derived. ## **Recommendations** What are the risk factors for stress ulcer development and which patients require prophylaxis? ### 1. Level 1 recommendations - i. Prophylaxis is recommended for all patients with: - 1. Mechanical ventilation - 2. Coagulopathy - 3. Traumatic brain injury - 4. Major burn injury ### 2. Level 2 recommendations - i. Prophylaxis is recommended for all ICU patients with: - 1. Multi-trauma - 2. Sepsis ### 3. Acute renal failure ### 3. Level 3 recommendations - i. Prophylaxis is recommended for all ICU patients with: - 1. ISS>15 - 2. Requirement of high-dose steroids (>250 mg hydrocortisone or equivalent per day) - ii. In selected populations, no prophylaxis is necessary *Is there a preferred agent for stress ulcer prophylaxis? If so, which?* ## 1. Level 1 recommendations - i. There is no difference between H₂ antagonists, cytoprotective agents, and some proton pump inhibitors - ii. Antacids should not be used as stress ulcer prophylaxis. ### 2. Level 2 recommendations i. Aluminum containing compounds should not be used in patients on dialysis ## 3. Level 3 recommendations i. Enteral feeding alone may be insufficient stress ulcer prophylaxis What is the duration of prophylaxis? - 1. Level 1 recommendations - i. There were no level 1 recommendations - 2. Level 2 recommendations - i. During mechanical ventilation or intensive care unit stay - 3. Level 3 recommendations - i. Until able to tolerate enteral nutrition ## **Scientific Foundation** Historical Stress ulcer prophylaxis has been an important part of the care for critical illness for over 20 years. Maynard et al. demonstrated alterations in splanchnic blood flow during acute illness. (49) The physiology of critical illness is frequently complicated with multiple systemic inflammatory abnormalities as well as alterations in hemodynamic status. Systemic hypoperfusion with associated catecholamine search, decreased cardiac output, hypovolemia, vasoconstriction, and inflammatory cytokine release is associated with splanchnic hypoperfusion. In comparison to normal patients, critically ill patients may have disturbances in their mucous and bicarbonate protective layer, owing to alterations in mucosal microcirculation. (26) Overall, the rate of clinically important upper gastrointestinal hemorrhage is low, and is currently rarely seen as a complication of critical illness owing to several potential factors, including strict regimens of prophylaxis. Clinical importance has classically been described as obvious physiologic decline, the requirement of operative for endoscopic intervention, and transfusion requirement. Use of protective agents has historically led to at least a 50% decrease in clinically significant hemorrhage. (50) #### Risk Factors Multiple studies have identified a myriad of risk factors for the development of stress ulceration, although this has not been studied in recent years. Based on the current literature review, the most universally accepted risk factors for stress ulceration are prolonged mechanical ventilation and coagulopathy. (4, 22, 28, 30, 38) Other identified risk factors include multiple injuries, spinal cord injury, injury severity score greater than 15, acute renal failure, and requirement of high-dose steroids. (3, 6, 16, 26, 33, 34) ### Timing and duration If stress ulcer prophylaxis is to be initiated, it should be done so at the onset of risk factors. Based on the current literature review, it is unclear when prophylaxis should be discontinued. Although it has been recommended that prophylaxis be continued for at least 7 days, this has failed to show a difference in outcomes of mortality or GI bleeding. Most studies recommend the continuation of stress ulcer prophylaxis throughout the duration of critical illness or intensive care unit stay. (29, 38, 41) This strategy would be individualized based on patient physiology. (27, 43) ### **Medication Choice** There are multiple pharmacologic options for the prophylaxis of stress ulceration. Histamine-2 receptor antagonists As a measure efficacy, gastric pH should be greater than 4. Tolerance to these medications has been seen, requiring increased dosing based upon gastric pH measurements. (51-53) Several studies have evaluated histamine receptor antagonists in comparison to cytoprotective agents, proton pump inhibitors, placebo, and various routes and dosages of administration with mixed results. # Proton pump inhibitors All studies have shown them to be equivocal to histamine receptor antagonists. Tolerance has not been demonstrated to these medications, however. There currently are no large studies that prove superiority of proton pump inhibitors to histamine receptor antagonists for stress ulcer prophylaxis. (2, 54) Omeprazole suspension has been shown to be effective by any enteral route, and is superior to placebo in the prevention of stress ulceration. (34, 35) ## Cytoprotective agents Sucralfate has been the best studied and the most widely used agent in this category. Its use has not been associated with an increase in stress ulceration. Sucralfate has been shown to alter intraluminal pH levels which may affect the portion of further orally administered pharmacologic agents. (24, 46) Numerous studies have shown that the impact on gastric pH is less than that associated with histamine receptor antagonists or proton pump inhibitors which may impact gastric colonization. (4, 5, 8, 9, 14, 22, 27, 38, 43) One study showed increased potential of aluminum toxicity using sucralfate in patients with renal impairment. (55) ### Antacids Use of antacids has been associated with a potential increase in the risk of hemorrhage. These agents also have been implicated in an increase in mortality, and are currently not recommended for use. (43) # Enteral feeding Currently, there is limited data supporting the use of enteral nutrition as the sole means of stress ulcer prophylaxis. There is controversy with regard to enteral nutrition administration in the setting of hemodynamic instability requiring pressor agents. Enteral feeding also has failed to show significant increases in gastric pH. There is controversy regarding protective effects of enteral nutrition and whether it is enough to warrant discontinuation of stress ulcer prophylaxis. (8, 19, 46) # No prophylaxis There have been
some retrospective studies that have evaluated the need for prophylaxis at all. These studies have been in a mixed ICU population primarily composed of medical patients, as opposed to trauma patients alone. (12, 17, 44, 45) Adequate prospective data is lacking to warrant recommending cessation of prophylaxis. ## **Summary** All critically ill patients with associated risk factors should receive chemical prophylaxis for stress ulceration. All agents (with the exception of antacids) appear equally adequate for prophylaxis against stress ulceration. The agent of choice should be based upon cost-effective arrangements between vendors and individual hospitals. The duration of treatment is ill-defined, but should be maintained while risk factors are present, the patient is admitted to the intensive care unit, or for a least one week after onset of critical illness. There is currently insufficient evidence to warrant cessation of prophylaxis in the setting of enteral nutrition if other risk factors exist, or to eliminate stress ulcer prophylaxis entirely. #### References - Baghaie AA, Mojtahedzadeh M, Levine RL, et al. Comparison of the effect of intermittent administration and continuous infusion of famotidine on gastric pH in critically ill patients: results of a prospective, randomized, crossover study. *Crit Care Med* 1995;23:687-691. - 2. Balaban DH, Duckworth CW, Peura DA. Nasogastric omeprazole: effects on gastric pH in critically Ill patients. *Am J Gastroenterol* 1997;92:79-83. - 3. Ben-Menachem T, Fogel R, Patel RV, et al. Prophylaxis for stress-related gastric hemorrhage in the medical intensive care unit. A randomized, controlled, single-blind study. *Ann Intern Med* 1994;121:568-575. - 4. Bonten MJ, Gaillard CA, van der Geest S, et al. The role of intragastric acidity and stress ulcus prophylaxis on colonization and infection in mechanically ventilated ICU patients. A stratified, randomized, double-blind study of sucralfate versus antacids. *Am J Respir Crit Care Med* 1995;152:1825-1834. - 5. Bonten MJ, Gaillard CA, van Tiel FH, et al. Continuous enteral feeding counteracts preventive measures for gastric colonization in intensive care unit patients. *Crit Care Med* 1994;22:939-944. - 6. Burgess P, Larson GM, Davidson P, et al. Effect of ranitidine on intragastric pH and stress-related upper gastrointestinal bleeding in patients with severe head injury. *Dig Dis Sci* 1995;40:645-650. - 7. Conrad SA, Gabrielli A, Margolis B, et al. Randomized, double-blind comparison of immediate-release omeprazole oral suspension versus intravenous cimetidine - for the prevention of upper gastrointestinal bleeding in critically ill patients. *Crit Care Med* 2005;33:760-765. - 8. Cook D, Heyland D, Griffith L, et al. Risk factors for clinically important upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. *Crit Care Med* 1999;27:2812-2817. - 9. Cook D, Walter S, Freitag A, et al. Adjudicating ventilator-associated pneumonia in a randomized trial of critically ill patients. *J Crit Care* 1998;13:159-163. - Cook DJ, Fuller HD, Guyatt GH, et al. Risk factors for gastrointestinal bleeding in critically ill patients. Canadian Critical Care Trials Group. N Engl J Med 1994;330:377-381. - 11. Cook DJ, Griffith LE, Walter SD, et al. The attributable mortality and length of intensive care unit stay of clinically important gastrointestinal bleeding in critically ill patients. *Crit Care* 2001;5:368-375. - 12. Devlin JW, Ben-Menachem T, Ulep SK, et al. Stress ulcer prophylaxis in medical ICU patients: annual utilization in relation to the incidence of endoscopically proven stress ulceration. *Ann Pharmacother* 1998;32:869-874. - 13. Eddleston JM, Pearson RC, Holland J, et al. Prospective endoscopic study of stress erosions and ulcers in critically ill adult patients treated with either sucralfate or placebo. *Crit Care Med* 1994;22:1949-1954. - 14. Eddleston JM, Vohra A, Scott P, et al. A comparison of the frequency of stress ulceration and secondary pneumonia in sucralfate- or ranitidine-treated intensive care unit patients. *Crit Care Med* 1991;19:1491-1496. - 15. Ephgrave KS, Kleiman-Wexler R, Pfaller M, et al. Effects of sucralfate vs antacids on gastric pathogens: results of a double-blind clinical trial. *Arch Surg* 1998;133:251-257. - 16. Fabian TC, Boucher BA, Croce MA, et al. Pneumonia and stress ulceration in severely injured patients. A prospective evaluation of the effects of stress ulcer prophylaxis. *Arch Surg* 1993;128:185-191; discussion 191-182. - 17. Faisy C, Guerot E, Diehl JL, et al. Clinically significant gastrointestinal bleeding in critically ill patients with and without stress-ulcer prophylaxis. *Intensive Care Med* 2003;29:1306-1313. - 18. Geus WP, Vinks AA, Smith SJ, et al. Comparison of two intravenous ranitidine regimens in a homogeneous population of intensive care unit patients. *Aliment Pharmacol Ther* 1993;7:451-457. - 19. Gurman G, Samri M, Sarov B, et al. The rate of gastrointestinal bleeding in a general ICU population: a retrospective study. *Intensive Care Med* 1990;16:44-49. - Hanisch EW, Encke A, Naujoks F, et al. A randomized, double-blind trial for stress ulcer prophylaxis shows no evidence of increased pneumonia. *Am J Surg* 1998;176:453-457. - 21. Heiselman DE, Hulisz DT, Fricker R, et al. Randomized comparison of gastric pH control with intermittent and continuous intravenous infusion of famotidine in ICU patients. *Am J Gastroenterol* 1995;90:277-279. - 22. Kantorova I, Svoboda P, Scheer P, et al. Stress ulcer prophylaxis in critically ill patients: a randomized controlled trial. *Hepatogastroenterology* 2004;51:757-761. - 23. Kitler ME, Hays A, Enterline JP, et al. Preventing postoperative acute bleeding of the upper part of the gastrointestinal tract. *Surg Gynecol Obstet* 1990;171:366-372. - 24. Lasky MR, Metzler MH, Phillips JO. A prospective study of omeprazole suspension to prevent clinically significant gastrointestinal bleeding from stress ulcers in mechanically ventilated trauma patients. *J Trauma* 1998;44:527-533. - 25. Laterre PF, Horsmans Y. Intravenous omeprazole in critically ill patients: a randomized, crossover study comparing 40 with 80 mg plus 8 mg/hour on intragastric pH. *Crit Care Med* 2001;29:1931-1935. - 26. Levy MJ, Seelig CB, Robinson NJ, et al. Comparison of omeprazole and ranitidine for stress ulcer prophylaxis. *Dig Dis Sci* 1997;42:1255-1259. - 27. Maier RV, Mitchell D, Gentilello L. Optimal therapy for stress gastritis. *Ann Surg* 1994;220:353-360; discussion 360-353. - 28. Martin LF, Booth FV, Karlstadt RG, et al. Continuous intravenous cimetidine decreases stress-related upper gastrointestinal hemorrhage without promoting pneumonia. *Crit Care Med* 1993;21:19-30. - 29. Martin LF, Booth FV, Reines HD, et al. Stress ulcers and organ failure in intubated patients in surgical intensive care units. *Ann Surg* 1992;215:332-337. - 30. Metz CA, Livingston DH, Smith JS, et al. Impact of multiple risk factors and ranitidine prophylaxis on the development of stress-related upper gastrointestinal bleeding: a prospective, multicenter, double-blind, randomized trial. The Ranitidine Head Injury Study Group. *Crit Care Med* 1993;21:1844-1849. - 31. Mulla H, Peek G, Upton D, et al. Plasma aluminum levels during sucralfate prophylaxis for stress ulceration in critically ill patients on continuous venovenous hemofiltration: a randomized, controlled trial. *Crit Care Med* 2001;29:267-271. - 32. Mustafa NA, Akturk G, Ozen I, et al. Acute stress bleeding prophylaxis with sucralfate versus ranitidine and incidence of secondary pneumonia in intensive care unit patients. *Intensive Care Med* 1995;21:287. - 33. Pemberton LB, Schaefer N, Goehring L, et al. Oral ranitidine as prophylaxis for gastric stress ulcers in intensive care unit patients: serum concentrations and cost comparisons. *Crit Care Med* 1993;21:339-342. - 34. Phillips JO, Metzler MH, Palmieri MT, et al. A prospective study of simplified omeprazole suspension for the prophylaxis of stress-related mucosal damage. *Crit Care Med* 1996;24:1793-1800. - 35. Phillips JO, Olsen KM, Rebuck JA, et al. A randomized, pharmacokinetic and pharmacodynamic, cross-over study of duodenal or jejunal administration compared to nasogastric administration of omeprazole suspension in patients at risk for stress ulcers. *Am J Gastroenterol* 2001;96:367-372. - 36. Pickworth KK, Falcone RE, Hoogeboom JE, et al. Occurrence of nosocomial pneumonia in mechanically ventilated trauma patients: a comparison of sucralfate and ranitidine. *Crit Care Med* 1993;21:1856-1862. - 37. Pimentel M, Roberts DE, Bernstein CN, et al. Clinically significant gastrointestinal bleeding in critically ill patients in an era of prophylaxis. *Am J Gastroenterol* 2000;95:2801-2806. - 38. Prod'hom G, Leuenberger P, Koerfer J, et al. Nosocomial pneumonia in mechanically ventilated patients receiving antacid, ranitidine, or sucralfate as prophylaxis for stress ulcer. A randomized controlled trial. *Ann Intern Med* 1994;120:653-662. - 39. Ruiz-Santana S, Ortiz E, Gonzalez B, et al. Stress-induced gastroduodenal lesions and total parenteral nutrition in critically ill patients: frequency, complications, and the value of prophylactic treatment. A prospective, randomized study. *Crit Care Med* 1991;19:887-891. - 40. Ryan P, Dawson J, Teres D, et al. Nosocomial pneumonia during stress ulcer prophylaxis with cimetidine and sucralfate. *Arch Surg* 1993;128:1353-1357. - 41. Simms HH, DeMaria E, McDonald L, et al. Role of gastric colonization in the development of pneumonia in critically ill trauma patients: results of a prospective randomized trial. *J Trauma* 1991;31:531-536; discussion 536-537. - 42. Simons RK, Hoyt DB, Winchell RJ, et al. A risk analysis of stress ulceration after trauma. *J Trauma* 1995;39:289-293; discussion 293-284. - 43. Thomason MH, Payseur ES, Hakenewerth AM, et al. Nosocomial pneumonia in
ventilated trauma patients during stress ulcer prophylaxis with sucralfate, antacid, and ranitidine. *J Trauma* 1996;41:503-508. - 44. Zandstra DF, Stoutenbeek CP. The virtual absence of stress-ulceration related bleeding in ICU patients receiving prolonged mechanical ventilation without any prophylaxis. A prospective cohort study. *Intensive Care Med* 1994;20:335-340. - 45. Zeltsman D, Rowland M, Shanavas Z, et al. Is the incidence of hemorrhagic stress ulceration in surgical critically ill patients affected by modern antacid prophylaxis? *Am Surg* 1996;62:1010-1013. - 46. Devlin JW, Claire KS, Dulchavsky SA, et al. Impact of trauma stress ulcer prophylaxis guidelines on drug cost and frequency of major gastrointestinal bleeding. *Pharmacotherapy* 1999;19:452-460. - 47. Oxman AD. Checklists for review articles. *BMJ* 1994;309:648-651. - 48. Eastern Association for the Surgery of Trauma, EAST Ad Hoc Committee on Practice Management Guideline ## Development. - 49. Maynard N, Bihari D, Beale R, et al. Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. *JAMA* 1993;270:1203-1210. - 50. Cook DJ, Reeve BK, Guyatt GH, et al. Stress ulcer prophylaxis in critically ill patients. Resolving discordant meta-analyses. *JAMA* 1996;275:308-314. - 51. Merki HS, Wilder-Smith CH. Do continuous infusions of omeprazole and ranitidine retain their effect with prolonged dosing? *Gastroenterology* 1994;106:60-64. - 52. Netzer P, Gut A, Heer R, et al. Five-year audit of ambulatory 24-hour esophageal pH-manometry in clinical practice. *Scand J Gastroenterol* 1999;34:676-682. - 53. Wilson P, Clark GW, Anselmino M, et al. Comparison of an intravenous bolus of famotidine and Mylanta II for the control of gastric pH in critically ill patients. Am J Surg 1993;166:621-624; discussion 624-625. - 54. Mallow S, Rebuck JA, Osler T, et al. Do proton pump inhibitors increase the incidence of nosocomial pneumonia and related infectious complications when compared with histamine-2 receptor antagonists in critically ill trauma patients? *Curr Surg 2004;61:452-458.* - 55. Tryba M, Kurz-Muller K, Donner B. Plasma aluminum concentrations in long-term mechanically ventilated patients receiving stress ulcer prophylaxis with sucralfate. *Crit Care Med* 1994;22:1769-1773. - 56. Allen ME, Kopp BJ, Erstad BL. Stress ulcer prophylaxis in the postoperative period. *Am J Health Syst Pharm* 2004;61:588-596. - 57. Cash BD. Evidence-based medicine as it applies to acid suppression in the hospitalized patient. *Crit Care Med* 2002;30:S373-378. - 58. Jung R, MacLaren R. Proton-pump inhibitors for stress ulcer prophylaxis in critically ill patients. *Ann Pharmacother* 2002;36:1929-1937. # Evidence Table EAST Stress Ulcer Prophylaxis Practice Management Guideline 2007 | First author | Year | Reference title | Reference | Study Design | Class of data for article | What are the risk factors for stress ulcer development and which trauma patients require prophylaxis ? | Class of data for question | Is there a preferred agent for
stress ulcer prophylaxis? If
so, what? | Class of data for question | What is the appropriate duration for stress ulcer prophylaxis in this population? | Class of data for question | Comments | |----------------|------|--|---|---|---------------------------|---|----------------------------|---|----------------------------|---|----------------------------|---| | Baghaie AA | 1995 | Comparison of the effect of intermittent administration and continuous infusion of famotidine on gastric pH in critically ill patients: results of a prospective randomized crossover study. | Crit Care Med.
1995
Apr;23(4):687-
91. | Prospective
crossover study on
15 patients
comparing gastric pt
during continuous
and bolus famotidine
administration | 2 | Did not address this question | | Did not address this question | | Did not address this question | | Continuous
infusion is more
effective than
intermittent
dosages in
maintaining the
"appropriate
gastric pH"
necessary for SUP | | Balaban DH | 1997 | Nasogastric omeprazole:
effects on gastric pH in
critically ill patients. | Am J
Gastroenterol.
1997
Jan;92(1):79-
83. | Prospective, non-
randomized on 10
medical ICU patients,
looking at effects of
omeprazole and
ranitidine on gastric
pH. | 2 | Did not address this question | | Yes, omeprazole | 2 | Did not address this question | | NGT omeprazole
maintained an
intragastric pH of >
4.0, and was cost-
effective in
comparison to
ranitidine or
famotidine. | | Ben Menachem T | 1994 | Prophylaxis for stress-
related gastric
hemorrhage in the MICU | Ann Intern
Med. 1994 Oct
15;121(8):568-
75. | Prospective,
randomized, single-
blind trial on 300
patients in the MICU
comparing placebo,
oral sucralfate, or IV
infusion of ranitidine. | 1 | Respiratory failure, shock,
sepsis, cardiac arrest, liver
failure, ARF, coagulopathy,
pancreatitis, high-dose steroids,
anticoagulation | 2 | No difference between cimetidine, sucralfate, and placebo | 1 | | | Medical patients
only. Patients with
GI bleed 3 RF vs
no bleed 2 RF.
There was no
difference in GI
bleed with
prophylaxis, but
?underpowered. | | Bonten MJ | 1994 | Continuous enteral
feeding counteracts
preventive measures for
gastric colonization in ICU
patients | Crit Care Med.
1994
Jun;22(6):939-
44. | Prospective, non-
randomized trial eval
change in gastric pH
with | 2 | Did not address this question | | No | 2 | Did not address this question. | | Sucralfate with topical ABX was equivalent to STD prophylaxis in prevention of gastric colonization unless pt received enteral feeding. Ph was lower in sucralfate group. No mention of GIB outcomes. | | Bonten MJ | 1995 | The role of intragastric acidity and stress ulcor prophylaxis on colonization and infection in mechanically ventilated (CU patients. A stratified, randomized double-blind study of sucralitate versus antacids. | 1995
Dec;152(6 Pt | Single center RCT
comparing antacids
vs sucralitate, 112
pts, stratified by
gastric pH. Outcome
measures: VAP,
gastric pH, gastric
colonization. | 1 | Mechanical ventilation | 1 | No difference between sucralfate and antacids | 2 | Did not address this question | | VAP rates,
mortality rates,
and gastric
colonization rates
were all similar. | | Burgess P | 1995 | Effect of ranitidine on
intragastric pH and stress
related upper
gastrointestinal bleeding
in patients with severe
head injury | Dig Dis Sci.
1995
Mar;40(3):645-
50. | Single center,
RCT,34 patients with
traumatic brain injury.
Comparison:
ranitidine infusion
versus placebo.
Outcome: GIB,
gastric pH. | 1 | Severe TBI, mechanical
ventilation, renal insufficiency,
hepatic insufficiency,
hypotension, surgery, multi-
trauma. | 2 | Yes, ranitidine | 1 | 3 days minimum | 2 | Small study that
showed risk of
bleeding
significantly
increased with
decreased gastric
pH. Ranitidine
effectively
increased gastric
pH and reduced
GIB. | | Conrad SA | 2005 | Randomized, double-blincomparison of immediate-
release omeprazole oral suspension versus
intravenous cimetidine for the prevention of upper
gastrointestinal bleeding
in critically ill patients. | Crit Care Med.
2005 | RCT, multi-
institutional, 359 pts.
Comparison: oral
omeprazole vs IV
cimetidine. Outcome
of GIB and change in
gastric pH. | 1 | Did not address this question | | Yes, omeprazole | 1 | Did not address this question. | | Omeprazole (oral) superior to cimetidine (IV) at preventing any overt GIB, noninferior to cimetidine in prevention of clinically significant bleeding. | | Cook D | 1998 | A comparison of sucralfate and rantitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. | N Engl J Med.
1998 Mar
19;338(12):791
7. | Multicenter RCT
1200 pts.
Comparison
sucralfate with
ranitidine. Outcome:
GIB. | 1 | Did not address this question | | Yes, ranitidine | 1 | Did not address this question. | | Ranitidine superior
to sucralfate in
prevention of GIB
in the ventilated
ICU patients. | | Cook D | 1999 | Risk factors for clinically
important upper
gastrointestinal bleeding
in patients requiring
mechanical ventilation. | Crit Care Med.
1999
Dec;27(12):28
12-7. | Multicenter RCT,
1077 pts.
Comparison:
ranitidine IV vs
sucralfate. | 1 | Thrombocytopenia, ARF, MOD, NPO | 2 | Ranitidine | 1 | Did not address this question | | Ranitidine superior
to sucralfate for
GIB prevention.
Enteral nutrition is
protective. | | Cook DJ | 2001 | The attributable mortality and length of ICU stay of clinically important gastrointestinal bleeding in critically ill patients. | Crit Care.
2001
Dec;5(6):368-
75. Epub 2001
Oct 5. | Retrospective study
MICU pts, outcome
of ICU LOS and GIB | 3 | Mechanical ventilation | 2 | Did not address this question | | Did not address this question | | GIB increases
mortality and ICU
length of stay.
Recommended
selective
prophylaxis. | | Cook DJ | 1994 | Risk factors for gastrointestinal bleeding in critically ill patients. | N Engl J Med.
1994 Feb
10;330(6):377-
81. | Retrospective study,
single center, 2252
pts. Comparison:
GIB vs no GIB. | 2 | Respiratory failure, shock, sepsis, cardiac arrest, liver failure, ARF, coagulopathy, pancreatitis, high-dose steroids, organ transplantation, anticoagulation | 3 | Did not address this question | | When risk factors are no longer present | 2 | Most important risk factors or mechanical ventilation greater than 48 hours and coagulopathy. Prophylaxis decreases bleeding risk by 50%. | |--------------|------|--|--|---|---|--|---|---|---|--|---|--| | Devlin JW | 1998 | Stress ulcer prophylaxis in MICU patients: annual utilization in relation to the incidence of endoscopically proven stress ulceration. | Ann
Pharmacother.
1998
Sep;32(9):869-
74. | Retrospective study
of MICU patients,
single institution.
Outcome of
endoscopic GI stress
ulceration. | 3 | Did not address this question | | No prophylaxis is necessary | 3 | Did not address this question | | MICU study
showing that
selective
prophylaxis does
not increase
endoscopic GIB | | Devlin JW | 1999 | Impact of trauma stress
ulcer prophylaxis
guidelines on drug cost
and frequency of major
gastrointestinal bleeding | Pharmacother
apy. 1999
Apr;19(4):452-
60. | single center,
retrospective, non-
randomized, 300
patients.
Comparison:
Outcome: Cost, GIB.
Pharmacy study. | 3 | TBI, SCI, coagulopathy, mech
vent, postop with NGT, PUD last
6 mos, gastric tonometry, MD
preference | 3 | Yes, cimetidine | 3 | Did not address this question | | Discontinue after
pt. tolerating a diet
or enteral feeding.
Gave cimetidine.
Saved \$5000 in
150 patients, and
had no GI bleeding
complications. | | Eddleston J | 1991 | A comparison of frequency of stress ulceration and secondary pneumonia in sucralfate-or ranitidine-treated intensive care unit patients | Crit Care Med.
1991
Dec;19(12):14
91-6. | Single center RCT,
60 patients.
Comparison:
sucralfate versus
ranitidine. Outcome:
stress ulceration,
VAP, gastric pH. | 1 | SICU pts with mech vent and high risk for stress ulceration | 2 | Yes, sucralfate | 1 | Did not address this question | | Gastric pH,
colonization, and
VAP increased
with ranitidine,
sucralfate
recommended. | | Eddleston JM | 1994 | Prospective endoscopic study of stress erosions and ulcers in critically ill adult patients treated with either sucralfate or placebo. | Crit Care Med.
1994
Dec;22(12):19
49-54. | Prospective RCT,
single institution. 26
pts, sucralfate vs
placebo. | 1 | Did not address this question | | Sucralfate | 1 | Did not address this question | | Small study
showing decrease
endoscopic
pathology with
sucralfate. | | Ephgrave KS | 1998 | Effects of sucralfate versus antacids on gastric pathogens: results of a double-blind clinical trial. | Arch Surg.
1998
Mar;133(3):251
7. | Single center RCT
comparing sucralfate
vs antacids of 140
VA patients
undergoing major
surgery requiring
NGT. Outcomes:
gastric pH,
pneumonia, GIB. | 1 | Did not address this question | | No difference between sucralfate and antacids | 1 | Did not address this question | | No difference in pneumonia or GIB between the study groups. Increased gastric colonization in antacids vs sucralfate, unclear significance. | | Fabian, TC | 1993 | Pneumonia and stress
ulceration in severely
injured patients. A
prospective evaluation of
the effects of stress ulcer
prophylaxis | Arch Surg.
1993
Feb;128(2):18
5-91;
discussion 191
2. | Single center RCT,
278 trauma patients.
Comparison:
sucralfate, bolus
cimetidine, infusion
cimetidine.
Outcome: Stress
ulceration,
pneumonia. | 1 | Spinal cord injury | 2 | No difference between cimetidine and sucralfate | 2 | Discontinued with discharge or death, minimum of 3 days. | 2 | No difference in
VAP rates | | Faisy C | 2003 | Clinically significant
gastrointestinal bleeding
in critically ill patients with
and without stress-ulcer
prophylaxis. | Intensive Care
Med. 2003
Aug;29(8):130
6-13. Epub
2003 Jun 26. | Single-center
retrospective study,
1473 pts.
Comparison:
prophylaxis vs no
prophylaxis. | 3 | Mechanical ventilation greater
than 48 hours, coagulopathy
and acute renal failure | 3 | No prophylaxis is necessary | 3 | Did not address this question | | No difference in
GIB with and
without
prophylaxis.
Recommended
further study. | | Geus WP | 1993 | Comparison of two IV ranitidine regimens in a homogenous population of ICU patients. | Aliment
Pharmacol
Ther. 1993
Aug;7(4):451-
7. | Single center RCT
comparing infusion
vs bolus ranitidine,
18 pts. Outcome
measures: gastric
pH | 1 | Did not address this question | | Yes, ranitidine | 3 | Did not address this question | | No difference
between infusion
vs bolus ranitidine. | | Gurman G | 1990 | The rate of gastrointestinal bleeding in a general ICU population: a retrospective study. | Intensive Care
Med.
1990;16(1):44-
9. | Retrospective study 298 patients. Comparison b/w antacids, cimetidine, both, and enteral nutrition. Outcome: coffee-ground emesis or melena. | 3 | Did not address this question | | Antacids +/- cimetidine | 3 | Continued until able to tolerate enteral nutrition | 3 | Stopped treatment
with enteral
feeding, no real
data significance
between
antacid/H2 blocker
patients, enteral
feeding had
increased
hemorrhage | | Hansich EW | 1998 | A randomized, double-
blind trial for stress ulcer
prophylaxis shows no
evidence of increased
pneumonia. | Am J Surg.
1998
Nov;176(5):45
3-7. | Single center, RCT,
158 patients.
Comparison:
placebo, ranitidine,
pirenzepine.
Outcome: VAP. | 2 | SICU and mechanically ventilated | 2 | No | 2 | Did not address this question | | No difference
between ranitidine
and pirenzepine
with regard to
VAP. Placebo
group had low
incidence of GIB,
?powered to study
this effect. | | Heiselman DE | 1995 | Randomized comparison
of gastric pH control with
intermittent and
continuous intravenous
infusion of famotidine in
ICU patients. | Am J
Gastroenterol.
1995
Feb;90(2):277-
9. | Singe center RCT, 40 patients. Comparison: continuous vs bolus famotidine. Outcome: gastric pH. | 1 | Did not address this question | | Famotidine bolus followed by infusion | 1 | Did not address this question | | No statistical
difference in GI
bleed, and hospital
mortality. pH
increased most in
bolus followed by
infusion. | | Kantorova I | 2004 | Stress ulcer prophylaxis in critically ill patients: a randomized controlled trial. | Hepatogastroe
nterology.
2004 May-
Jun;51(57):757
61. | Single center RCT,
287 patients.
Comparison:
omeprazole,
famotidine,
sucralfate, placebo.
Outcome: GIB,
pneumonia, gastric
pH. | 1 | Coagulopathy | 1 | No | 1 | Did not address this question | | No difference
between any
treatment arm and
GIB, pneumonia.
Increased gastric
pH may increase
pneumonia rate. | | Kitler ME | 1990 | Preventing postoperative
acute bleeding of the
upper part of the
gastrointestinal tract | Surg Gynecol
Obstet. 1990
Nov;171(5):36
6-72. | Prospective
randomized trial, 298
pts in the ICU
comparing
bioflavonoid,
sucralfate, and
Maalox. | 1 | Critically ill patients in the ICU, age >50 yrs. | 2 | No | 1 | Did not address this question | | No difference in
the bleeding based
on the various
treatments. Age
>50 correlated to
bleeding. Small
study. | | Lasky MR | 1998 | A prospective study of omeprazole suspension to prevent clinically significant gastrointestinal bleeding from stress ulcers in mechanically ventilated trauma patients | J Trauma.
1998
Mar;44(3):527-
33. | Single center,
retrospective study,
60 pts. Comparison:
None. Outcome:
GIB, gastric pH,
pneumonia. | 3 | Did not address this question | | Yes, omeprazole | 3 | Did not address this question | | Omeprazole
suspension is safe
and effective as
prophylaxis.
Gastric pH is
appropriately
elevated.
Omeprazole
suspension is cost-
effective. | |--------------|------|--|---
---|---|---|---|--|---|-------------------------------|---|--| | Laterre PF | 2001 | Intravenous omeprazole
in critically ill patients: a
crossover study
comparing 40 with 80 mg
plus 8 mg/hr on
intragastric pH. | Crit Care Med.
2001
Oct;29(10):193
1-5. | Single center
prospective
crossover trial, 10
pts. Comparison
40mg bolus
omeprazole vs 80mg
+8mg/hr gtt.
Outcome: gastric pH. | 2 | Did not address this question | | Yes, omeprazole 40 mg bolus /day | 2 | Did not address this question | | 40 mg PPI as
good as higher
doses and
continuous
infusion for gastric
pH. | | Levy MJ | 1997 | Comparison of
omeprazole and ranitidine
for stress ulcer
prophylaxis | Dig Dis Sci.
1997
Jun;42(6):1255
9. | Prospective RCT,
single institution, 67
pts. Comparison:
ranitidine,
omeprazole.
Outcome:
pneumonia, GIB. | 1 | Coagulopathy, burn, severe trauma, respiratory failure, coagulopathic, TBI, acute renal failure, sepsis | 2 | Yes, omeprazole | 1 | Did not address this question | | Higher number of
GIB in the
rantidine group in
comparison to
omeprazole, 11 vs
2. ?Underpowered
secondary to low
incidence.
Unclear RE: risk
factors. Duration
not addressed. | | Maier RV | 1994 | Optimal therapy for stress
gastritis | Ann Surg.
1994
Sep;220(3):35
3-60;
discussion 360
3. | Single center RCT in
98 trauma patients.
Comparison:
ranitidine +antacids
vs sucralfate.
Outcome: VAP, GIB,
LOS, cost. | 1 | Did not address this question | | No difference between sucralfate and ranitidine | 1 | Did not address this question | | H2 blockers increase gastric pH more effectively, but no clinical difference in GIB episodes. pH and colonization may be responsible for pneumonia. | | Martin LF | 1993 | Continuous intravenous cimetidine decreases stress-related upper gastrointestinal hemorrhage without promoting pneumonia. | Crit Care Med.
1993
Jan;21(1):19-
30. | Multicenter RCT
comparing IV
cimetidine to
placebo, 117
patients. | 1 | Major surgery, burns >30%
TBSA, respiratory failure, multi-
trauma, hypotensive,
hypovolemic shock, metabolic
acidosis, sepsis | 1 | Yes, cimetidine | 1 | Did not address this question | | Good multicenter,
double-blinded,
placebo controlled
study to compare
continuous IV
cimetidine to
nothing. pH
increases with H2
blockers, but not
associated with
increased rate of
GIB | | Martin LF | 1992 | Stress ulcers and organ failure in intubated patients in SICUs. | Ann Surg.
1992
Apr;215(4):332
7. | Multicenter RCT, 127
SICU patients.
Comparison: PO
misoprostol and IV
placebo vs PO
placebo and IV
cimetidine.
Outcome: GIB, | 1 | Mechanical ventilation in patients with hypotension or sepsis | 2 | No difference between misoprostol and cimetidine | 1 | 14 days or ICU discharge | 2 | Aggressive endoscopic surveillance in very ill SICU population. Prophylaxis may not eliminate mucosal lesions, but does decrease surgically significant bleeding. | | Metz CA | 1993 | Impact of multiple risk
factors and ranitidine
prophylaxis on the
development of stress-
related upper
gastrointestinal bleeding,
a prospective,
multicenter, double-blind
randomized trial. | Crit Care Med.
1993
Dec;21(12):18
44-9. | Prospective,
multicenter, RCT, ten
ICUs. Comparison:
infusion ranitidine vs
placebo. Outcome
GIB. | 1 | Head injury, mechanical ventilation, serum cr-20, SGOT or SGPT > twice normal, PLT-75K, PT>nl, SBP-90, major operation, other clinically important trauma (blunt chest/long bone fr), GCS-6, ASA use | 1 | Yes, ranitidine | 1 | Did not address this question | | Good multicenter,
double-blinded,
placebo controlled
study.
Complications
increased with 2 or
more risk factors.
Unclear definitions
for UGIB. | | Mulla H | 2001 | Plasma aluminum levels
during sucralfate
prophylaxis for stress
ulceration in critically ill
patients on continuous
venovenous
hemofilitration: a
randomized, controlled
trial. | Crit Care Med.
2001
Feb;29(2):267-
71. | Single center RCT,
20 patients.
Comparison:
sucralifate versus IV
rantitdine. Outcome:
plasma aluminum
samples. | 1 | Did not address this question | | Should not use sucralfate in patients requiring CVVH | 2 | Did not address this question | | Should not use
sucralfate in
patients
undergoing CVVH | | Mustafa NA | 1995 | Acute stress bleeding prophylaxis with sucralfate versus ranitidine and incidence of secondary pneumonia in ICU patients. | Intensive Care
Med. 1995
Mar;21(3):287. | Single center RCT,
31 patients.
Comparison:
sucralifate versus
ranitidine. Outcome:
stress ulcer bleeding,
pneumonia. | 1 | Did not address this question | | no, sucralfate equivalent to ranitidine | 2 | Did not address this question | | Small study,
sucralfate
comparable to
rantitdine.
Rantitdine
increases gastric
pH which may
increase
tracheobronchial
colonization. | | Pemberton LB | 1993 | Oral ranitidine as prophylaxis for gastric stress ulcers in intensive care unit patients: serum concentrations and cost comparisons. | Crit Care Med.
1993
Mar;21(3):339-
42. | Single center prospective non-randomized trial, 18 patients. Comparison: ranitidine 150 mg versus 300 mg. Outcome: serum ranitidine concentrations. | 2 | Sepsis, mech vent, major
trauma, hypotension
(<90mmHg) | 2 | Yes, oral ranitidine | 2 | Did not address this question | | Only looked at
ranitidine, oral
administration ok
and lower dose
(150mg)as
effective as higher
dose (300mg),
given twice daily. | | Phillips JO | 1996 | A prospective study of
simplified omeprazole
suspension for the
prophylaxis of stress-
related mucosal damage. | Crit Care Med.
1996
Nov;24(11):17
93-800. | Prospective,
unrandomized, single
center study, mixed
SICU population
outcome with
omeprazole
suspension. | 2 | SICU patients with anticipated
48 hr stay and any one of the
following: TBI, burns, ARF, acid-
base d/o, multitraums,
coagulopathy, multiple
operations, coma, hypotension
>1hr, sepsis | 2 | Yes, omeprazole | 3 | Did not address this question | | Shows efficacy
and safety of PPI,
no placebo group.
Significant
increase in pH. | | | | 1 | | | | 1 | 1 | | 1 | | | | |----------------|------|---|---|--|---|--|---|---|---|--|---|--| | Phillips JO | 2001 | A randomized, pharmacokinetic and pharmacokinetic and pharmacokynamic, cross-over study of duodenal or cipiunal administration compared to nasogastric administration of omeprazole suspension in patients at risk for stress ulcers. | 2001 | Randomized cross-
over study, 9 surgical
patients.
Comparison: gastric
vs enteral route.
Outcome:
intragastric pH. | 2 | Mechanical ventilation | 2 | Did not address this question | | Did not address this question | | Small study only 9
patients gastric vs
enteral
omeprazole.
Efficacy is similar
for either route. | | Pickworth KK | 1993 | Occurrence of nosocomial pneumonia in mechanically ventilated trauma patients: a comparison of sucralfate and ranitidine | Crit Care Med.
1993
Dec;21(12):18
56-62. | Single center RCT,
83 patients.
Comparison
sucralfate versus
ranitidine.
Outcomes:
pneumonia. | 1 | Did not address this question | | No difference between sucralfate and ranitidine | 2 | 3 days minimum | 3 | Small study found
no difference
between sucralfate
and ranitidine RE:
pneumonia. | | Pimentel M | 2000 | Clinically significant
gastrointestinal bleeding
in critically ill patients in
an era of prophylaxis. | Am J
Gastroenterol.
2000
Oct;95(10):280
1-6. | Retrospective review
of 7200 patients,
identifying 12 with
bleeding. | 3 | Age, septic shock, AAA repair,
and enteral or parenteral
nutrition | 3 | No | 3 | Did not address this question | | Risk factors were
identified in 12
patients that
developed GIB.
Did not support
SUP. | | Prod'hom G | 1994 | Nosocomial pneumonia in
mechanically ventilated
patients receiving antacid;
rantidrine, or sucraflate as
prophylaxis for stress
ulcer. A RCT. | Ann Intern
Med. 1994 Apr | Single center non-
placebo controlled
RCT, 244 ICU pts.
Comparison:
antacids, ranitidine,
sucralifate.
Outcome:
GIB, gastric pH,
pneumonia | 1 | Mechanical ventilation | 1 | Yes, sucralfate | 1 | until extubated or out of the ICU | 2 | SUP prophylaxis with sucralfate reduces the risk for late onset pneumonia in vented patients, with similar protection compared to antacids and ranitidine. | | Ruiz-Santana S | 1991 | Stress-induced
gastroduodenal lesions
and total parenteral
nutrition in critically ill
patients: frequency,
complications and value
of prophylactic treatment | Crit Care Med.
1991
Jul;19(7):887-
91. | Single center RCT 97
pts on TPN.
Comparison: TPN,
TPN+sucralfate,
TPN+ranitidine.
Outcome: GIB. | 1 | Mechanical ventilation >6 days | 2 | No | 2 | Did not address this question | | Small study, no
difference in GIB
while on TPN with
or without
prophylaxis. | | Ryan P | 1993 | Nosocomial Pneumonia
during stress ulcer
prophylaxis with
cimetidine and sucralfate | Arch Surg.
1993
Dec;128(12):1
353-7. | Single center, RCT,
114 pts.
Comparison:
Cimetidine infusion
versus sucralfate.
Outcome:GIB, VAP. | 1 | Did not address this question | | No difference between sucralfate and cimetidine | 1 | Did not address this question | | Nice study with
decent number of
pts, 56 and 58 in
each arm but
focused on
Nosocomial
pneumonia and
did not define UGI
bleed. | | Simms H | 1991 | Role of gastric
colonization in the
development of
pneumonia in critically ill
patients | J Trauma.
1991
Apr;31(4):531-
6; discussion
536-7. | single center RCT,
89 pts. Comparison:
antacids vs
cimetidine vs
sucralfate. Outcome:
Gastric pH,
pneumonia. | 1 | Did not address this question | | No | 2 | ICU stay | 2 | Small trial, main
outcome was
pneumonia, no
difference between
groups | | Simons RK | 1995 | A risk analysis of stress ulceration after trauma | J Trauma.
1995
Aug;39(2):289-
93; discussion
293-4. | Retrospective review
of trauma patients
identifying risk
factors, low
incidence. | 3 | ISS >=16, RTS<13, AIS head >=3, SCI | 3 | Did not address this question. | | When risk factors are no longer
present, unless SCI then 3
weeks | 3 | Overall rate of
stress ulcer
hemorrhage is low,
with or without
prophylaxis, the
SCI population
should continue for
3 wks | | Thomason MH | 1996 | Nosocomial pneumonia in
ventilated trauma patients
during stress ulcer
prophylaxis with
sucralfate, antacid and
ranitidine | | Single center, RCT,
242 pts.
Comparison:
Sucralfate, antacid,
ranitidine. Outcome:
Mortality, GIB,
pneumonia. | 1 | Did not address this question | | No, sucralfate equivalent to ranitidine | 1 | Did not address this question | | Antacids associated with higher mortality compared to sucralfate and ranitidine which had equivalent GIB and pneumonia rates. | | Zandstra DF | 1994 | The virtual absence of stress-ulcer related bleeding in ICU patients receiving prolonged mechanical ventilation. A prospective cohort study. | Intensive Care
Med. 1994
May;20(5):335-
40. | Retrospective study,
183 mixed ICU
patients.
Comparison: None.
Outcome: GIB. | 3 | Did not address this question | | No prophylaxis is necessary | 3 | Did not address this question | | No prophylaxis given, 1% incidence of GIB. Patients were considered high-risk with mean Tryba risk score of 38. All patients received cefotaxime, steroids, and DVT prophylaxis. | | Zeltsman D | 1996 | Is the incidence of
hemorrhagic stress
ulceration in surgically
critically ill patients
affected by modern
antacid prophylaxis? | Am Surg. 1996
Dec;62(12):10
10-3. | Single center
retrospective study,
304 pts.
Comparison:H2
blockers +/- antacids
vs no prophylaxis.
Outcome:
Hemorrhagic stress
ulceration. | 3 | Did not address this question | | No prophytaxis is necessary | 3 | ICU stay | 3 | Multidisciplinary ICU with no difference in hemorrhage with or without H2 blockade, does not distinguish if trauma patients had differential stress ulcer hemorrhage. |