Overview

I. Shock
II. Cardiac arrest
III. Acute Hypertension
IV. Ventilator support
V. Asthma
VI. Increased intracranial pressure
VII. Child Abuse
VIII. Brain Death
IX. End of life
X. Law and ethics
I. Shock

A. Definition
- Acute energy failure: inadequate ATP to support cellular function
- Lack of oxygen (anemia, hypoxia or ischemia), glucose substrate (glycopenia) or mitochondrial dysfunction (cellular)
- Children are sensitive to small amounts of volume loss due to decreased volume, decreased cardiac reserve (high baseline heart rate, reduced HR compensation for decreased stroke volume)

B. Etiology
- Hypovolemic
- Cardiogenic
- Distributive
- Obstructive: cardiac tamponade, tension pneumothorax, massive pulmonary embolism

C. Clinical presentation (see tables below)
- Inadequate oxygen and nutrient delivery to meet tissue demands
- Compensated shock: perfusion to vital organs maintained, hard to detect, tachycardia may be present
- Decompensated shock: poor perfusion, tachycardia, hypotension, lethargy

D. Resuscitation
- Peripheral, interosseous, umbilical access
- Isotonic crystalloid bolus 20 ml/kg until endpoints met
- Ionotropes/vasopressors if refractory
- Consider hydrocortisone for suspected adrenal insufficiency

E. End-points of resuscitation
- Age appropriate pulse pressure, heart rate, respiratory rate
- Cardiac index > 2
- SVO2 > 70%
- Anion gap < 16, lactate < 2 mmol/l
- Urine output > 1 ml/kg/h
<table>
<thead>
<tr>
<th>System</th>
<th>Compensated Shock, Mild Hemorrhage, Simple Hypovolemia (<30% blood volume loss)</th>
<th>Decompensated Shock, Moderate Hemorrhage, Marked Hypovolemia (30%–45% blood volume loss)</th>
<th>Cardiopulmonary Failure, Severe Hemorrhage, Profound Hypovolemia (>45% blood volume loss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>Mild tachycardia</td>
<td>Moderate tachycardia</td>
<td>Severe tachycardia</td>
</tr>
<tr>
<td></td>
<td>Weak peripheral pulses</td>
<td>Thready peripheral pulses</td>
<td>Absent peripheral pulses</td>
</tr>
<tr>
<td></td>
<td>Strong central pulses</td>
<td>Weak central pulses</td>
<td>Thready central pulses</td>
</tr>
<tr>
<td></td>
<td>Low-normal blood pressure (SBP >70 mmHg + [2? age in years])</td>
<td>Frank hypotension (SBP <70 mmHg + [2? age in years])</td>
<td>Profound hypotension (SBP <50 mmHg)</td>
</tr>
<tr>
<td></td>
<td>Mild acidosis</td>
<td>Moderate acidosis</td>
<td>Severe acidosis</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Mild tachypnea</td>
<td>Moderate tachypnea</td>
<td>Severe tachypnea</td>
</tr>
<tr>
<td>Neurologic</td>
<td>Irritable, confused</td>
<td>Agitated, lethargic</td>
<td>Obtunded, comatose</td>
</tr>
<tr>
<td>Integumentary</td>
<td>Cool extremities, motting</td>
<td>Cool extremities, pallor</td>
<td>Cold extremities, cyanosis</td>
</tr>
<tr>
<td></td>
<td>Poor capillary refill (>2 sec)</td>
<td>Delayed capillary refill (>3 sec)</td>
<td>Prolonged capillary refill (>5 sec)</td>
</tr>
<tr>
<td>Excretory</td>
<td>Mild oliguria, increased specific gravity</td>
<td>Marked oliguria, increased blood urea nitrogen</td>
<td>Anuria</td>
</tr>
</tbody>
</table>

- **0 min** Recognize decreased mental status and perfusion. Maintain airway and establish access according to PALS guidelines.
- **5 min** Push 20 mL/kg isotonic saline or colloid boluses up to and over 60 mL/kg. Correct hypoglycemia and hypocalcemia.
- **15 min** Fluid-responsive shock. Establish central venous access, begin dopamine therapy, and establish arterial monitoring.
- **60 min**
 - **Normal blood pressure**
 - **Low blood pressure**
 - **Cold shock**
 - **Svo2 sat <70%**
 - Add vasodilator or type III PDE inhibitor with volume loading.
 - **Titrate epinephrine for cold shock and norepinephrine for warm shock to normal MAP – CVP and Svo2 saturation >70%**
 - **Catecholamine-resistant shock**
 - **At risk of adrenal insufficiency?**
 - **Give hydrocortisone**
 - **Not at risk?**
 - **Do not give hydrocortisone**
 - **Consider ECMO**
<table>
<thead>
<tr>
<th>Type of Shock</th>
<th>HR</th>
<th>Preload</th>
<th>Contractility</th>
<th>SVR</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypovolemic</td>
<td>↑</td>
<td>↓↓</td>
<td>+/-</td>
<td>↑</td>
<td>• High flow oxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fluid resuscitation: evaluate perfusion after 60 mL/kg total volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bolused, then consider pressors</td>
</tr>
<tr>
<td>Septic (early, warm)</td>
<td>↑</td>
<td>↓↓</td>
<td>+/-</td>
<td>↓</td>
<td>• High flow oxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fluid resuscitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Antibiotics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pressors (dopamine, norepinephrine, phenylephrine)</td>
</tr>
<tr>
<td>Septic (late, cold)</td>
<td>↑</td>
<td>↓↓</td>
<td>↓</td>
<td>↑</td>
<td>• High flow oxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fluid resuscitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Antibiotics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pressors (dopamine, epinephrine, phenylephrine)</td>
</tr>
<tr>
<td>Anaphylactic</td>
<td>↑</td>
<td>↓↓</td>
<td>↓</td>
<td>↓</td>
<td>• High flow oxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Epinephrine (IM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fluid resuscitation</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>↑</td>
<td>↓↓</td>
<td>+/-</td>
<td>↓↓</td>
<td>• Fluid resuscitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pressors (norepinephrine)</td>
</tr>
<tr>
<td>Cardiogenic</td>
<td>↑</td>
<td>↑</td>
<td>↓↓</td>
<td>↑</td>
<td>• High flow oxygen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fluid resuscitation (5–10 mL/kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• CHF management (CPAP/BiPAP, diuretics, ACE inhibitors)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Inotropes (milrinone, dobutamine)</td>
</tr>
<tr>
<td>Obstructive</td>
<td>Cause dependent</td>
<td>Cause dependent</td>
<td>Cause dependent</td>
<td>Cause dependent</td>
<td>• Therapy directed at primary etiology of shock</td>
</tr>
</tbody>
</table>
II. Cardiac Arrest: four phases

A. Epidemiology
 - Most frequently from respiratory failure
 - SIDS most common cause out-of-hospital cardiac arrest
 - Most in-hospital cardiac arrest have primary cardiac disease
 - CPR outcome: 5-10% survival to hospital discharge
 - 10-80% of survivors have significant neurologic disability

B. Pre-arrest (protect)
 - Optimize community education on child safety
 - Optimize patient monitoring
 - Avoid progression of respiratory failure and/or shock to cardiac arrest

C. No-Flow (preserve)
 - Minimize interval to defibrillation
 - Preserve cardiac and cerebral substrate

D. Low flow (resuscitate)
 - Successful CPR: push hard/push fast
 - Titrate CPR to end-tidal CO₂ or pulse pressure
 - High dose epinephrine (0.05-0.2 mg/kg) NOT recommended for initial or rescue therapy
 - Consider mechanical devices/ECMO if no return of circulation following 20-110 minutes CPR
 - Shock resistant VF should be treated with amiodarone

E. Post-resuscitation: high risk of continuing brain injury, ventricular arrhythmias, reperfusion injury
 - Optimize cardiac/cerebral perfusion
 - Resuscitative systemic hypothermia (24-48 hours)
 - Avoid hyperglycemia/hyperthermia/hyperventilation
 - Early occupational/physical therapy

III. Ventilatory support

A. Volume limited
 - Delivers preset tidal volume regardless of pressure required
 - Risk for barotraumas
 - Alarms and pop-off valves that limit peak inspiratory pressure can minimize risk of barotrauma

B. Pressure limited
 - Gas flow delivered until preset pressure is reached
• Gas flow delivery held for set inspiratory time
• Reduces risk of barotrauma
• Useful for neonatal and infant support (<10 kg)
• Permits delivery of small tidal volumes

C. **High frequency ventilation**
 • High frequency oscillatory ventilation (HFOV)
 o High amplitude and high frequency
 o Tidal volumes less than dead space
 o Bias gas flow maintains airway pressure
 o Minimizes barotrauma and oxygen toxicity
 o **Insure patients euvolemic due to risk for decreased venous return**
 • High frequency jet ventilation
 o Used simultaneously with a conventional ventilator
 o Jet injector port delivers short bursts of inspiratory gas
 o Adequate gas exchange at low airway pressures
 o Maintains lung volumes and minimizes barotrauma

IV. Acute Hypertension

A. **Assessment**
 • Use appropriate cuff size; correlate with BP tables for age, height, weight
 • Hypertensive urgency: BP elevation without end-organ damage. More common in children
 o Symptoms: Headache, blurred vision, nausea
 o Lower MAP by 20% over 1 hour and return to baseline over 24 to 48 hours
 • Hypertensive emergency: elevation of BP with acute end-organ damage
 o cerebral infarction/hemorrhage, pulmonary edema, renal failure, encephalopathy, seizures
 o **Rule out hypertension secondary to elevated ICP before lowering BP**
 o Lower MAP by 1/3 over first 6 hours, then 1/3 over next 24-36 hours, then final 1/3 over next 48 hours
 • Physical Examination
 o Four extremity BP, funduscopy, CV, neuro
 o Diagnostic evaluation: BUN/Cr, electrolytes, abdominal ultrasound, head CT, renal Doppler ultrasound

V. Asthma

A. **Pathophysiology**
 • Most common cause of respiratory distress and failure
 • Bronchoconstriction, epithelial cell injury-mediated neurogenic inflammation, luminal obstruction from secretions and cellular debris
 • Progressive dynamic hyperinflation
Pulmonary edema: increase RV afterload, decreased LV preload, decreased cardiac output

B. Evaluation
- General appearance, respiratory rate, degree of tachycardia, oxygen saturation
- Severe distress: lethargy, agitation, orthopnea, fragmented speech, use of accessory muscles, silent chest due to poor air movement
- Metabolic acidosis from dehydration, lactic acid production from respiratory musculature or cardiac failure

C. Pharmacotherapy
- Oxygen: mask, tent, nasal cannula supplemented face mask
- Inhaled bronchodilators (β-2 agonists) to reduce hypoxic pulmonary vasoconstriction
- Continuous albuterol (20 mg/hr max) may be needed
- Ipratropium bromide acts on muscarinic receptors, synergistic to β-2 – agonists (200-500 ug every 6-8 hours)
- Subcutaneous β-2-agonists may be needed in initial management
- Methylprednisolone reduces mucus production and inflammation
- Helium-oxygen promotes laminar flow but loses effectiveness at FiO2 > 50%

D. Ventilatory support
- Indications: cardiopulmonary arrest, respiratory failure
- Trial of non-invasive ventilation while preparing for intubation
- Pre-intubation volume loading, topical aerosolized lidocaine, pre-oxygenation
- Control tidal volume and respiratory rate to minimize dynamic hyperinflation

E. Refractory Disease
- ECMO should be considered for life-threatening hypoxemia; survival is high, morbidity minimized with veno-venous techniques
- Bronchoscopy only if airway obstruction from mucus/debris not responsive to mucolytics
- Respiratory acidosis can be managed with tromethamine

F. Morbidity
- Nosocomial infections: minimize by attention to detail
 - Hand washing
 - Transpyloric feeding
 - Sterile technique for all procedures
- Post-traumatic stress disorder
- Opioid/benzodiazepine dependence
• Altered sleep patterns
• Myopathy/rhabdomyolysis
• Deconditioning
• Deep venous thrombosis

VI. Increased Intracranial Pressure (ICP)

A. Assessment
• History: trauma, vomiting, fever, headache, neck pain, visual change. In infants: irritability, vomiting, poor feeding, lethargy, bulging fontanel
• Physical exam/laboratory evaluation
• Management:
 o Elevate HOB 30° (if not contraindicated)
 o Head CT
 o Normal saline or hyperosmolar solutions
 ▪ 3% NaCL, 2-5 ml/kg or mannitol 0.25 g/kg IV
 ▪ Hyperventilation for acute management only (pCO₂ 30-35 mmHg)
 o DO NOT LOWER BLOOD PRESSURE
 o Prevent hyperthermia
 o Dexamethasone to reduce cerebral edema in space-occupying lesions
 o Keep MAP > ICP
 o Avoid hypotension, hypoxia, hypercarbia, hypovolemia

PITFALL

VII. Child Abuse

• Multidisciplinary approach: medical professionals, social worker, community agencies
• Correlate physical findings with history
• Shapes of bruises important: be suspicious of bruises in protected areas (buttocks, chest, abdomen, back)
• Retinal hemorrhages are pathognomonic of abusive head trauma
• Skeletal survey mandatory in children < 2 years with suspicious fractures
• Treat: medical stabilization primary goal
• Report: All healthcare workers who suspect child maltreatment must report to local police and/or child welfare agency
• Document: legible, include word-for-word history, drawings of injuries including shape, location, size, color

PEARL

VIII. Brain Death

• Determine if treatable causes of coma exist (hypothermia, toxic/metabolic states, hypotension)
• Physical Exam (see algorithm)
 o Requires age dependent observation period between 2 exams
 o Coexistent coma and apnea
 o Loss of volitional ability
Absent brainstem function
Consistent exam throughout observation period

<table>
<thead>
<tr>
<th>Age</th>
<th>Hours Between 2 Examinations</th>
<th>Recommended Number of EEGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 days-2 months</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>2 months-1 year</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>>1 year</td>
<td>12</td>
<td>Not needed</td>
</tr>
</tbody>
</table>

IX. End of Life Care

A. Analgesia
 - Document signs and symptoms of suffering and rationale of the regimen chosen to treat
 - Titrate to effect; no theoretical or practical maximal dose

B. Doctrine of double effect
 - The action must be good or morally indifferent
 - The agent must intend only the good effect and not the bad
 - The bad effect cannot be a means to the good effect
• The good that is intended must outweigh the bad that is permitted
• Viable alternatives to double-effect reasoning in guiding care of patients dying in the ICU are limited

X. **Law and ethics**

A. **Overview**
• Most deaths in the PICU occur following withdrawal of care
• Parents have the authority to determine the best interests of their children
• Children should participate in decision-making commensurate with their development and should not be excluded from decision-making
• Children should provide assent to care whenever reasonable

B. **Assent**
• Helping the patient achieve appropriate awareness of the nature of his/her condition
• Telling the patient what to expect with tests/treatments
• Assess the patient's understanding of the situation
• Solicit an expression of the patient's willingness to accept the proposed care

C. **Baby Doe regulations**
• State regulator system to investigate cases in which medically indicated treatment is withheld from handicapped infants
• Regulatory stature; no strong clinical application
• Withholding medically indicated treatment from a disabled infant with a life-threatening condition is considered medical neglect.
• Exceptions:
 o Infant is chronically and irreversibly comatose
 o Treatment would prolong dying
 o Treatment would be futile in terms of survival