Infectious Disease
PG17: Surgical Critical Care Board Review

Douglas Schuerer, MD, FACS
Associate Professor of Surgery
Director of Trauma
SCC Program Director

Washington University in St. Louis
School of Medicine
Douglas Schuerer, MD, FACS

None
Introduction - Topics

- Gram Negative Infections and Double Coverage
- Clostridium Difficile Infections
- Abdominal Infections
- Urinary Tract Infections
Gram Negative Double Coverage

Why might this be useful?
- Resistant Organisms have become more prevalent in many intensive care units
- Good evidence that early appropriate antibiotic therapy reduces mortality
- Early double coverage more likely to cover resistant organism and reduce mortality
- By providing better coverage, theoretic benefit of reducing risk of creating resistance
Gram Negative Double Coverage

- Potential Risk of Double Coverage
 - More antibiotics leaves one at higher risk of antibiotic associated diarrhea (C. Diff)
 - Other complications of antibiotic use (renal failure)
 - Creating resistant bacteria by increasing antibiotic exposure
Gram Negative Double Coverage

- Community Acquired Infections
 - Low rate of resistant gram – infections in most communities
 - If low resistance rate among bacteria, there is little evidence that double coverage of gram – is beneficial
Gram Negative Double Coverage

- Health Care Associated Infections
- Mixed Evidence
- Pro Evidence
 - Mostly retrospective studies
 - Beta lactam with aminoglycoside may be better for those with shock and neutropenia, but not overall survival- Meta analysis of RCTs.
 - Comparison of combination therapies
Gram Negative Double Coverage

- Con Evidence
 - Meta-analysis of 64 RCT: B lactam with aminoglycoside not beneficial
 - Another Meta-analysis showed benefit only when Pseudomonas present, this review included retrospective studies
Gram Negative Double Coverage

- Evidence is clearly mixed, but favors no double coverage.
- What should you do?
 - Many have stopped routine double gram negative
 - Base decisions on unit specific antibiotic resistance and bacterial growth patterns
 - May consider if severe shock or immunosuppression
 - If any double coverage is needed, likely an aminoglycoside is the appropriate choice.
Clostridium Difficile

- Diagnosis
- Toxin Assay
 - Most tests are done with this
 - Different toxins A and B
 - Enzyme immunoassay
 - Rapid
 - Miss 30%
 - GDH detects antigen – Not specific and used in combination
Clostridium Difficile

- Tissue culture
 - Test effects of toxin on human cells
 - More specific but 24 to 48 hours for result
- PCR
 - Newer and becoming more rapid, but expensive
- Toxigenic stool culture
 - Growth of bacteria and search for toxins
 - Gold standard, but takes 2 to 3 days
 - Cannot tell between overgrowth and colonization
Clostridium Difficile

- Different tests used per each hospital routine.
- These may have different sensitivities.
- Multiple sequential tests are generally not recommended.
Clostridium Difficile

- Prevention
 - Hand washing with soap and water effective at killing spore
 - Alcohol does not kill the spores
Clostridium Difficile

- **Treatment**
 - **Standard regimens**
 - Flagyl: PO or IV – absorbed if taken PO and delivered through the bloodstream. May not be as good for recurrent infections
 - Vancomycin: PO or rectal
 - 7-14 days depending on severity and if recurrent
 - **New antibiotics**
 - Fidaxomicin
 - Use for treatment failure or recurrence
 - $2800 for 10 day therapy
Abdominal Infections

• Types
 • Primary
 • Associated with bacterial infection of abdominal fluid
 • Usually ascites or peritoneal dialysis
 • Secondary
 • Primary infection form perforated viscous
 • Appendicitis, perforated ulcer, diverticulitis
Abdominal Infections

• Tertiary
 • Recurrent infection in those already with surgery for secondary peritonitis

• Quaternary
 • Severe recurrent infections, fistula, intra-abdominal catastrophe
Location: Organism

- **Proximal:** If no acid suppression therapy, Gram + aerobic (streptococcus)
 - May be different in face of distal obstruction

- **Distal**
 - Coliforms (E. Coli, Klebsiella)
 - Anaerobes (Bacteroides, Clostridium)
Prophylaxis

- **Elective**
 - Single agent to cover expected organism, no more than 24 hours, prior to skin incision
- **Emergent**
 - Single agent to cover expected organism, duration dependent on findings, prior to skin incision
- **Trauma**
 - Give prior to skin incision, If less than 12 hours of contamination, no more than 24 hours of therapy
- **Necrotizing pancreatitis – not indicated**
Treatment

- **Community Acquired:** Mild – to – moderate
- Many regimens work, single agent and monotherapy. Cover enteric gram-negative aerobic and facultative bacilli and enteric gram-positive streptococci, anaerobic bacilli distally
- Avoid significant anti-Pseudomonal activity agents for these mild infections
- Avoid Ampicillin-Sulbactam- E. Coli resistance
- Avoid cefotetan and clindamycin due to B frag resistance
- No need for empiric enterococcus nor candida coverage
Treatment – Severe

- Broad spectrum gram negative coverage
- Avoid quinolones with higher resistance of E. Coli
- Empiric coverage of enterococcus
- No need for empiric MRSA nor yeast coverage
- Get cultures and sensitivities, check local antibiogram
Treatment

- Health Care Related
 - Empiric therapy based on local antibiogram
 - Broad expanded spectrum coverage
 - Tailor to culture results
- SIS Guidelines cover this well
Specific Organisms

- **Antifungal**
 - Use antifungal if Candida grows
 - If C. albicans – fluconazole
 - Echinocandin if resistant species
 - If critically ill, use echinocandin instead of triazole
 - Ampho B not recommended as initial therapy
Specific Organisms

- Enterococcus/ MRSA
 - Treat for faecalis not VREF unless immunocompromised
 - Empiric coverage in health care associated disease
 - Treat if it is isolated
 - MRSA coverage if known carrier and prior treatment failure
Duration

- In general no more than seven days
- If proximal may only need 24 hours
- Non complicated appendicitis, less than 24 hours
Urinary Tract Infections

- Definitions
 - Symptomatic Urinary Tract infection (SUTI)
 - At least 1 of the following signs or symptoms with no other recognized cause:
 - fever (>38°C), suprapubic tenderness, or costovertebral angle pain or tenderness and,
 - a positive urine culture of $\geq 10^5$ colony-forming units (CFU)/ml with no more than 2 species of microorganisms
Patient with or without an indwelling urinary catheter has no signs or symptoms (i.e., for any age patient, no fever (>38°C), urgency, frequency, dysuria, suprapubic tenderness, or costovertebral angle pain or tenderness, OR for a patient ≤1 year of age, no fever (>38°C core), hypothermia (<36°C core), apnea, bradycardia, dysuria, lethargy, or vomiting) and

- A positive urine culture of >10^5 CFU/ml with no more than 2 species of uropathogen microorganisms and
- A positive blood culture with at least 1 matching uropathogen microorganism to the urine culture, or at least 2 matching blood cultures drawn on separate occasions if the matching pathogen is a common skin commensal.
CAUTI

- Catheter Associated Urinary Tract Infection

- CAUTI if catheter in place at time of symptoms or culture or taken out within 48 hours and the above definitions are true
UTI

- **Measures**
 - Reporting of CAUTI and ABUTI to the CDC
 - Treated as preventable (never event)

- **Prevention**
 - Remove catheters ASAP
 - Not always possible in SICU
What to do in your unit?

- Decrease number of indiscriminate urinary cultures sent by team members
- Forbid pan cultures
- Research previous cultures and plan timing of new UTI searches
- Establish protocols for when to obtain urinary screens
- Screen for UTI using UA
- Add Foley removal to daily checklist
UTI

www.CDC.gov
Thanks for your attention

- Will save questions until after Dr. Haut’s presentation.
Elliott R. Haut, MD, FACS

Lippincott, Williams, & Wilkins
Book Royalties as editor of
“Avoiding Common ICU Errors”
Topics to Cover

• Selective digestive decontamination (SDD)
• Anti-fungal use in the ICU
• Antibiotic resistance patterns & mechanism
• High Yield Infectious Disease Facts
• Antibiotic Classes
• Anti-Fungals
• High Yield Drug Facts
Selective digestive decontamination (SDD)

• Background
 – ICU acquired infections in are important cause of morbidity and mortality with pneumonia being a common infection
 – Some thought that this is causes by aspiration of oral flora and may be prevented by reducing the bacterial load
 – One approach is SDD

• Topical or Systemic antibiotics
Selective digestive decontamination (SDD)

- Cochrane Systematic Review
 - 36 studies involving 6914 ICU patients
 - Does administration of antibiotics prevent the development of respiratory infections?
- 2 routes- systemic and/or topical
- Outcome measures - respiratory tract infection (RTI) and mortality
Selective digestive decontamination (SDD)

• Topical vs. systemic antibiotics
 – significant reduction in RTIs
 • (OR 0.28, 95% CI 0.20 to 0.38)
 – significant reduction in total mortality
 • (OR 0.75, 95% CI 0.65 to 0.87)
Selective digestive decontamination (SDD)

- Topical antimicrobials alone (or comparing topical plus systemic versus systemic alone)
 - significant reduction in RTIs
 - (OR 0.44, 95% CI 0.31 to 0.63)
 - NO significant reduction in total mortality
 - (OR 0.97, 95% CI 0.82 to 1.16)
Prophylactic vs. Empiric vs. Preemptive anti-fungal use in the ICU
Prophylactic anti-fungal use in the ICU

• Goal to prevent disease
 – Endorsed for at-risk patients in ICUs with high rates of invasive candidiasis
 – Target patients with ICU LOS >48-72 hours
 – Mostly focuses on candida - most common
 – Most studied drug is Fluconazole
 – At least 15 studies
 – Consistent data - reduces invasive candida infections
 – Some data - reduces mortality
Empiric anti-fungal use in the ICU

- Idea to wait until patient develops signs/symptoms of infection
 - Then add anti-fungal therapy in cases where fungal infection a concern
 - Some suggest this route to avoid widespread exposure to azoles which may lead to resistance
 - Drawback is real since delaying appropriate therapy is associated with higher mortality
Preemptive anti-fungal use in the ICU

- Middle ground between prophylactic and empiric approaches
 - Use early screening tools to detect need for anti-fungal therapy before usual signs and symptoms (such as fever) which are notoriously absent or delayed in the ICU
 - Tests that can be considered
 - Blood tests (i.e. galactomannan)
 - New radiographic finding
 - Positive fungal culture
Antibiotic resistance patterns and mechanisms of resistance

• Factors that drive resistance (WHO)
 – Inadequate commitment to a comprehensive and coordinated response
 – ill defined accountability and engagement
 – Weak or absent surveillance and monitoring
 – Inappropriate and irrational use of antibiotics
 – Poor infection prevention and control practices
 – Depletion of resources and lack of R&D
Antibiotic resistance MRSA
Methicillin Resistant S. Aureus

• Now more common in community
• Treat community and healthcare associated differently
 – Community Acquired
 • can use easy cheap, oral drugs
 • Bactrim (trimethoprim sulfa), Clindamycin
• Healthcare Acquired
 – Different resistance pattern, Need “bigger guns”
 – Vancomycin, Linezolid, Daptomycin, Tigecycline, Dalfopristin/Quinupristin (Synercid)
Antibiotic resistance
VRE

• Vancomycin-Resistant Enterococci (VRE)
• Two main species E. faecium (most common) and E. faecalis
• Plasmids or transposons contain DNA that confer vancomycin resistance
• Treatment options
 – Daptomycin, Linezolid, Dalfopristin/Quinupristin (Synercid), Tigecycline, Nitrofurantoin (UTI only)
Antibiotic resistance
ESBL

- Extended-spectrum beta-lactamases (ESBL) enzymes
- confer resistance to most beta-lactam antibiotics, including penicillins, cephalosporins, and the monobactam aztreonam
- Associated with poor outcomes
- Treat with carbapenem (imipenem, meropenem, ertapenem)
Antibiotic resistance
KPC

• Klebsiella pneumoniae carbapenemase (KPC) producing enzyme
 – Enzymes reside on transmissible plasmids and confer resistance to all beta-lactams
 – KPC can be transmitted from Klebsiella to other bacteria (i.e. E. coli, Pseudomonas aeruginosa, Citrobacter, Salmonella, Serratia, and Enterobacter)

• Carbapenems will not treat the infection
• Drugs to consider- colistin, aztreonam, tigecycline, fosfomycin (for UTI)
High Yield ID Facts: Pneumonia

• Community acquired
 – Most common pathogen in adults is Streptococcus pneumoniae (pneumococcus)
 – Atypical pneumonia
 • Legionella, Mycoplasma, Chlamydia
 • Consider empiric coverage with macrolide or respiratory fluoroquinolone

• Pneumocystis jiroveci pneumonia- new name for PCP (Pneumocystis pneumonia)
High Yield ID Facts: Pneumonia

- If use vancomycin, need to dose to get trough levels of 15-20 µg/mL
- Ventilator associated pneumonia
 - 8-day course appropriate for most uncomplicated cases (except pseudomonas)
 - Don’t use Daptomycin - inactivated by pulmonary surfactants
 - Don’t use tigecycline - associated with increased risk of death
High Yield ID Facts:
Necrotizing soft tissue infections

• The right answer is almost always surgical debridement

• Broad spectrum antibiotic coverage
 – Empiric MRSA coverage due to high rates of community acquired MSRA
 – Add clindamycin
 • mostly bacteriostatic
 • also prevents toxin production by staphylococci

• Can consider hyperbaric oxygen
High Yield ID Facts: Meningitis

• Make sure drug crosses blood-brain barrier (BBB) into central nervous system (CNS)

• NEVER use Zosyn (Piperacillin and Tazobactam) does not cross BBB
 – Ampicillin does cross BBB
 – Vancomycin only crosses BBB with inflammation so OK to use for meningitis (has meningeal inflammation)
High Yield ID Facts: Bacteremia

• Always need to document clearance (negative blood cultures) for gram positives
• Most (if not all) patients with gram positive bacteremia should get echocardiogram to rule out endocarditis
• Use Duke criteria to diagnose endocarditis
High Yield ID Facts: Open fractures

- 1st generation cephalosporin good for most Grade I and II fractures
- Aminoglycosides useful for Grade III and should be dosed daily
- Rarely need anaerobic coverage, but may consider with contamination from likely source (cow pasture).
Some Antibiotic Classes (with examples)

• β-Lactam antibiotics
 – penicillins (amoxicillin, methacillin, oxacillin)
 – cephalosporins (Cephalexin, cefazolin, cefotetan, ceftriaxone)
 – carbapenems (Imipenem, Meropenem, Ertapenem)
 – monobactam (Aztreonam)
Some Antibiotic Classes (with examples)

• Tetracyclines (tetracycline)
• Macrolides
 – Erythromycin, Azithromycin, Clarithromycin
• Aminoglycosides
 – Gentamicin, Tobramycin, Amikacin
• Fluoroquinolones
 – ciprofloxacin, levofloxacain
Some Antibiotic Classes (with examples)

- Cyclic peptides
 - Vancomycin, Streptogramins, Polymyxins
- Lincosamides (clindamycin)
- Oxazolidinones - Linezolid (Zyvox)
- Sulfa antibiotics
 - Sulfamethoxazole (usually combined with Trimethoprim)
 - SMX/TMP = Bactrim
Anti-Fungals

• Polyenes
 – Binds to ergosterol in cell membrane and alters permeability
 • Amphotericin B
 • AmBisome (liposomal formulation of amphotericin B)- less toxic form
Anti-Fungals

- **Azoles**
 - inhibits the fungal cytochrome P450 enzyme which leads to ergosterol synthesis
 - targets fungal cell wall
 - Ketoconazole, Voriconazole, Fluconazole, Itraconazole
Anti-Fungals

• Echinocandins
 – inhibit glucan synthase (another cell wall component)
 – not through P450 system- fewer drug interactions
 – Caspofungin, Micafungin, Anidulafungin
High Yield Drug Facts

- Common drugs that cause Thrombocytopenia
 - Linezolid, Vancomycin, β-lactams
- Common drugs that lower seizure threshold - β-lactams
- Cefotetan/Clindamycin
 - Both option for abdominal surgery prophylaxis
 - DO NOT use to treat abdominal infection due to high bacteroides fragilis resistance
High Yield Drug Facts

• Colistin (polymyxin E)
 – Bactericidal drug - disrupts outer cell membrane of gram-negative rods
 – Currently used for pan-resistant bacteria (i.e. Acenitobacter, Pseudomonas)
 – Major side effects – nephrotoxicity and neuotoxicity
High Yield Drug Facts

- Most fluoroquinolones (i.e. ciprofloxacin, levofloxacin) are a good choice for UTI since they concentrate in urine – EXCEPT moxifloxacin (does not concentrate in urine)

- DO NOT use echinodandins (i.e. Caspofungin, Micafungin) for fungal UTI since they do not concentrate in urine
• Good Luck