

Artificial Heart Program

Provider Review: General VAD Overview

Indications for VAD

- Bridge to transplant (BTT)
 - historically most common (~80%)
 - allow rehab from severe CHF while awaiting donor
- Bridge to recovery (BTR)
 - unload heart, allow "reverse remodeling"
 - can be short- or longterm
 - typically for acute/reversible HF (postpartum, myocarditis)

- "Destination" therapy (DT)
 - permanent device, instead of transplant
 - increasingly prevalent due to better survival, chronic HTx shortage
- Bridge to candidacy (BTC)/ Bridge to decision (BTD)
 - when eligibility unclear at implant
 - not true "indication" but true for many pts

Which Pump for Which Patient?

Device	Ventricles	Indications	Duration	Trial?	Pulsatile?	Discharge?
Centrimag	L, R, B	BTR	Short	Y (PC)	N	N
Impella	L	BTR	Short	N	N	N
Thoratec	L, R, B	BTR, BTT	Medium	N	Y	Y
Syncardia	В (ТАН)	BTT	Medium	N	Y	Y
HeartMate II	L	BTT, DT	Long	N	N	Y
Jarvik	L	втт	Long	Y	N	Υ
Heartware	L	(BTT), DT	Long	Y	N	Y

Ventricles: Ventricle(s): L: left/LVAD; R: right/RVAD; B: both/BiVAD

Duration: Approx. max. pump life; Short: < 1 month; Medium: < 1-2 yrs; Long: > 2 years

Indications: BTR: Bridge to recovery; BTT: Bridge to HTx; DT: Destination Rx

Trial?: In clinical trial? (PC: postcardiotomy)

Discharge?: Home discharge?

LVAD vs. BiVAD/TAH

- Risk factors for RV Dysfunction/Failure
 - smaller BSA
 - female
 - nonischemic etiology
 - elevated LFTs, INR, BUN, Cr
 - high CVP/PCW ratio
 - low RV stroke work index

$$\frac{(PAM - CVP) \times 1000 \times CI}{HR}$$

- requiring pressors, vent, acute VAD/ECMO
- heavy intraop bleeding, long CPB times

LVAD vs. BiVAD/TAH

- Long-term implantable LVAD w/acute RVAD (Levitronix) backup
 - Preferable if patient not clearly bridge to transplant
 - Pros:
 - ease of implant
 - low thrombosis/hemolysis risk
 - Cons:
 - limited mobility
 - risk of cannula dislodgment
 - shorter duration support
 - surgical explant required

LVAD vs. BiVAD/TAH

- Consider planned long-term BiVAD or TAH if:
 - severe, long-standing RV dysfunction
 - refractory VT/VF
 - more clearly bridge to transplant
 - Prefer BiVAD if:
 - small BSA/peds
 - "standard" anatomy
 - inadequate intrathoracic dimensions for TAH
 - Prefer TAH if:
 - large BSA
 - adequate intrathoracic dimesions
 - valvular pathologies (AI, AS, mechanical valve(s))
 - LV/RV thrombus;
 - Hypertrophic or restrictive cardiomyopathy
 - H/O LV reduction or prior HTx

General Principles

- ALL VADs are:
 - Preload-dependent
 - EKG-independent
 - Afterload-sensitive
 - Anticoagulated
- Key differences in management strategy depend on pulsatile vs. non-pulsatile device

Problems/Complications (Common to All VADs)

- Major Complications:
 - Bleeding (~50% incidence)
 - Thrombosis (5-40% incidence, device-dependent)
 - Infection (20-40% incidence, device-dependent)
 - sepsis is leading cause of death in long-term VAD support

Problems/Complications (Common to All VADs)

- Major Complications:
 - RV dysfunction/failure (~10-20% incidence)
 - Device failure/malfunction (variable)
 - Hemolysis (~10-20% incidence)

Problems/Complications

- Other Common Issues
 - Arrhythmias
 - more important for nonpulsatile LVAD
 - most deleterious in isolated RVAD (pulmonary edema)
 - less/not important in TAH/BiVAD
 - HLA sensitization
 - only important in BTT/BTC patients
 - Malnutrition/failure to thrive
 - Flow/preload issues (hyper/hypo-tension/-volemia)
 - Depression/adjustment disorders

Approach to Common Complications

- Infection
 - meticulous driveline care: sterile VAD dressing changes, driveline immobilization
 - prophylactic abx/antifungal
 - vanco, pip/tazo for 7d post-op (longer if open chest)
 - antifungal for 14d postop (longer if open chest)
 - optimal nutrition, hemodynamics, line care
 - early extubation & mobilization
 - persistent bacteremia typically requires VAD exchange
 - fungemia in VAD ~90% mortality

Approach to Common Complications

- RV Dysfunction/Failure
 - careful SGC-guided volume management
 - keep CVP ~10-15 w/CI >2.0
 - avoid unnecessary transfusions
 - early, aggressive volume removal (SCUF, Aquadex)
 - echo-guided titration of flow/speed
 - avoid R→L shift of ventricular septum
 - judicious dosing of inotropes, pulmonary vasodilators
 - return to OR early for RVAD if persistent high CVP with low PAP/CI

Approach to Common Complications

- Bleeding & Thrombosis
 - careful control of anticoagulation imperative
 - early
 - operative bleed
 - late
 - CVA
 - device thrombosis
 - acquired von Willebrand disease (GI bleeds, epistaxis)
 - treat both coagulation cascade & platelets
 - follow UMMC VAD protocol

Code/CPR Guidelines

- Follow VAD Code Protocol
- Cardioversion OK w/o disconnecting controller (be careful if on A/C power)
- If in doubt about whether VAD is pumping, auscultate
 - device failure rare in current devices (exc with thrombosis); pump stoppage often related to accidental driveline/power disconnect
 - if not running or in doubt, switch to b/u equipment or actuate manually if possible
- Volume always helps, but be gentle, esp. if isolated RVAD
- CPR: generally only as last resort
 - may be necessary if patient in non-perfusing rhythm w/evidence of global hypoperfusion (e.g. cyanosis, LOC, MAP <40s)
 - MAP alone may not be good guide/ may not be obtainable w/o a-line in nonpulsatile
 - high risk of cannula dislodgement

Resources

- UMMC Intranet:
 - http://intra.umm.edu/ummc/cardiology/vad.htm
 - VAD Protocols (A/C, code mgmt, general mgmt)
 - Quick guides, overview slides for devices in use
- General principles of continuous-flow VAD management:
 - J Heart Lung Transplant 2010;29:S1-S39

