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A B S T R A C T

Post-traumatic epilepsy continues to be a major concern for those experiencing traumatic brain injury.

Post-traumatic epilepsy accounts for 10–20% of epilepsy cases in the general population. While seizure

prophylaxis can prevent early onset seizures, no available treatments effectively prevent late-onset

seizure. Little is known about the progression of neural injury over time and how this injury progression

contributes to late onset seizure development. In this comprehensive review, we discuss the

epidemiology and risk factors for post-traumatic epilepsy and the current pharmacologic agents used

for treatment. We highlight limitations with the current approach and offer suggestions for remedying

the knowledge gap. Critical to this pursuit is the design of pre-clinical models to investigate important

mechanistic factors responsible for post-traumatic epilepsy development. We discuss what the current

models have provided in terms of understanding acute injury and what is needed to advance

understanding regarding late onset seizure. New model designs will be used to investigate novel

pathways linking acute injury to chronic changes within the brain. Important components of this

transition are likely mediated by toll-like receptors, neuroinflammation, and tauopathy. In the final

section, we highlight current experimental therapies that may prove promising in preventing and

treating post-traumatic epilepsy. By increasing understanding about post-traumatic epilepsy and injury

expansion over time, it will be possible to design better treatments with specific molecular targets to

prevent late-onset seizure occurrence following traumatic brain injury.

� 2015 Published by Elsevier Ltd on behalf of British Epilepsy Association.
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1. Introduction

Traumatic brain injury (TBI) is a leading cause of acquired
epilepsy [1]. In veterans, 57% of seizures can be linked to TBI
[2]. Immediately following injury, the brain undergoes distinct
Abbreviations: AEDs, anti-epileptic drugs; APOE4, apolipoprotein E epsilon 4; BBB,

blood brain barrier; BDNF, brain-derived neurotrophic factor; JNK, c-Jun N-terminal

kinase; CCI, controlled cortical impact; EEG, electroencephalogram; mTOR,

mechanistic target of rapamycin; PTZ, pentylenetetrazol; PTE, post-traumatic

epilepsy; PTS, post-traumatic seizure; TBI, traumatic brain injury.
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electrophysiological changes, which can be detected with electro-
encephalography [3]. Seizures not only account for heightened
morbidity and mortality in the early stages following TBI, but
also remain the leading cause of death several years following
TBI [4]. Seizure prophylaxis is commonly employed post-injury
with variable success [5]. The prophylaxis is primarily used for
prevention of single occurrence acute post-traumatic seizure
(PTS) but has little efficacy on preventing the recurrent chronic
seizures that define post-traumatic epilepsy (PTE). The underly-
ing mechanisms that may contribute to PTE are poorly
understood making PTE more likely to be refractory to medical
management [6]. Despite prophylaxis treatment, 4–53% of TBI
patients still have chronic seizures [7]. Unfortunately, few novel
treatments for the prevention of PTE have been discovered over
the past century [8].
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In order to improve treatment options, it is important to
elucidate the underlying pathophysiology of PTE. To do so, pre-
clinical models should be utilized to understand intrinsic
biochemical mechanisms of injury. Animal models can be used
to study natural progression toward seizure activity following
neural injury [8]. In the past, experimental approaches for studying
PTE frequently employed seizure-inducing agents such as kainic
acid or pentylenetetrazol (PTZ). While such models have provided
compelling evidence that changes in glutamate signaling and
GABA-A channels may play a role in acute seizure onset following
TBI, they have failed to answer how the natural progression of TBI
contributes to late onset seizures [9]. How genetic regulation
affects these acute receptor and channel changes is poorly
understood and is a topic worthy of investigation [10]. It has
been shown that glutamate signaling increases in response to
decreased GABAnergic activity [11], and as we discuss later, the
phenomenon is likely due to microRNA regulation. The key
unanswered question is why some individuals recover from these
transient signal changes while others go on to develop PTE
[12]. Recent evidence from pre-clinical rodent models suggests
that neuroinflammation may play a key physiologic role in shifting
the balance toward PTE [13]. We discuss in particular the role of
toll-like receptors and how at extended post-injury time points,
neuroinflammation may contribute to loss of hippocampal
interneurons [9]. Important knowledge has been obtained from
both clinical and pre-clinical studies. TBI patients with cerebral
contusion and subsequent inflammation are at higher risk for
epilepsy than those without contusion [14]. Mechanisms triggered
by neuroinflammation such as oxidative stress and mitochondrial
dysfunction appear to add to the onset and progression of epilepsy
post-TBI and may contribute to the neurodegeneration that has
been reported with PTE [15].

In this paper, we will begin with a review of epidemiology and
go through treatment options, preclinical models, the biochemical
cascade of PTE development, and novel pharmaceutical targets.
The epidemiology and symptoms associated with PTE will be
discussed with particular emphasis on the patient’s gender, injury
severity, primary mechanism of injury, and genetic background.
We will also highlight current treatment options used for
prophylaxis therapy of acute PTS elaborating upon mechanism
of action and potential side effects. Potential reasons for treatment
ineffectiveness for PTE will be postulated. In order to improve
outcomes and reduce late onset seizure occurrence following TBI,
biochemical pathways should be investigated using well-designed
pre-clinical models. The pros and cons of available models will be
outlined with a subsequent overview of what is currently known
about the biochemical mechanisms for seizure development post-
TBI. Finally, we will address important biochemical pathways
warranting further investigation and discuss how these pathways
can contribute to the discovery of novel pharmaceutical targets.
Because no current treatment option has been shown to
completely prevent PTE, the long-term goal is to foster improved
treatment approaches by targeting specific and important
mechanisms of injury progression. By developing targeted therapy,
it is plausible that within the century we can see a drastic reduction
in late onset seizure post-TBI.

2. Epidemiology and symptoms

Seizures are a major complication that can occur after TBI, and
the development of epilepsy is a serious concern for neurotrauma
patients. After TBI, the occurrence of seizures has been categorized
as immediate (<24 h), early (1–7 d), or late (>1 wk) [16]. According
to the National Institute of Neurological Disorders and Stroke,
epilepsy requires the occurrence of two or more spontaneous
seizures. The International League Against Epilepsy expanded the
definition to include 1 spontaneous seizure with a risk for future
seizure [17]. TBI associated with at least two unprovoked, late
onset seizures constitutes the diagnosis of PTE; otherwise, the
diagnosis is PTS [18]. Additional definitions related to PTE revolve
around the degree of head trauma. Many investigators currently
use the following: (1) mild TBI (loss of consciousness less than
30 min and no skull fracture); (2) moderate TBI (loss of
consciousness more than 30 min and less than 24 h, with or
without skull fracture); and (3) severe TBI (loss of consciousness
greater than 24 h, with contusion, hematoma, or skull fracture)
[19,20].

2.1. Epidemiology

Epidemiological studies have found that PTE accounts for
10–20% of symptomatic epilepsy in the general population, and 5%
of all epilepsies [21]. Regarding PTE caused by war, the incidence is
much higher in veterans than the incidence in civilian populations.
The total incidence of PTE in the civilian population is approxi-
mately 2% [21], but in the veteran population it reaches as high as
25% when patients are followed 5 or more years from time of
combat [22]. Moreover, the incidence of epilepsy ranges from 22 to
43% (median 34%) five years after TBI in civilians, and the incidence
is almost 50% 10 or more years after injury for veterans.

2.2. Clinical presentation

The latency from TBI to the occurrence of the first seizure varies
greatly [4]. In general, approximately 80% of individuals who
develop PTE, have their first seizure within the first 12 months
post-injury, and more than 90% by the end of the second year
[23]. After the first late onset seizure (>1 wk from injury), 86% of
patients have reported a second seizure within 2 years [24].

Several clinical studies have identified the types of late seizures
observed after TBI, which are varied. In a study of 60 patients with
moderate to severe TBI, 52% developed generalized seizures, 33%
had focal seizures, and 15% had focal seizures with secondary
generalization [24]. In another study of 123 patients with PTE,
representing 4% of all patients evaluated in the epilepsy monitor-
ing unit, most of them had localization-related epilepsy: 57% had
temporal lobe epilepsy, 35% had frontal lobe epilepsy, and 3% each
had parietal and occipital lobe epilepsy [6]. Of patients with
temporal lobe epilepsy, 44% had mesial temporal sclerosis, 26% had
temporal neocortical lesions, and 30% were non-lesional [6].

PTE may present with a myriad of other sequelae. In particular,
PTE has been associated with insomnia in veterans where they
have an inability to fall or stay asleep [25]. In a large population-
based study (N = 1961), persons identified as having depression at
discharge have been found to be almost twice as likely to develop
PTE [26]. In the same study, participants with three or more
chronic comorbid conditions, such as cardiovascular disease or
diabetes, at discharge had increased risk of PTE [26]. It has yet to be
determined whether the co-morbidities precede development of
PTE or are the result of traumatic brain damage.

2.3. Risk factors

A critical determinant for PTE is TBI severity [26]. In a
population-based clinical study (N = 4541) of TBI cases occurring
between 1935 and 1984 in Olmstead County, Minnesota the
investigators found that the five-year cumulative probability of
unprovoked seizures was 0.7% in patients with mild TBI, 1.2% for
moderate TBI, and 10.0% for severe TBI [19]. For the cohort with
30 years of follow-up, the cumulative incidence was 2.1% for mild
TBI, 4.2% for moderate TBI, and 16.7% for severe TBI [19]. In a
separate study, Englander and colleagues prospectively followed
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647 patients admitted to any of four trauma centers within 24 h of
injury. The authors identified a ‘‘dose–response’’ for the number of
cerebral contusions and the development of late seizures—the
cumulative probability of unprovoked seizures by 2 years was
approximately 25% for patients with multiple contusions, com-
pared to 8% for a single contusion and 6% for no contusions. For
those with very mild TBI (no acute loss of consciousness, amnesia,
confusion, or neurological deficit), only 3 (0.1%) out of
2999 patients developed seizures within 1 year of follow-up
compared to 1 (0.1%) out of 994 of the control group with
orthopedic injuries, suggesting that the incidence of seizures was
not significantly greater than the general population [27].

Other key risk factors for more severe injury include dural
penetration, depressed skull fracture, intracranial hematoma, and
loss of consciousness or amnesia for more than one day [28]. Hem-
orrhage and skull fracture are often seen with more severe TBI
[29]. Hemorrhage and skull fracture increase inflammation and
Table 1
Clinical studies examining potential genetic risk factors for developing seizures after T

Study population Seizure

prevalence

Genes examined 

Vietnam War veterans

with brain injury

N = 199

43.7% � APOE e4
� GAD

� Catechol-O-methyltransferase

� GRIN (a glutamate receptor and

a subunit of the NMDA)

� Brain-derived neurotrophic factor,

� Dopamine b-hydroxylase.

Patients at level 1 U.S.

trauma center with

severe TBI

N = 206

17.2% � A1 adenosine receptor 

Patients at level 1 U.S.

trauma center with

severe TBI

N = 257

19.8% � GAD1

� GAD2

Patients at level I trauma

center with moderate

or severe TBI

N = 106

20% � APOE e4 

Patients with TBI

N = 69

16% � APOE e4 

Patients with severe TBI

N = 322

18.6% � APOE e4 

Patients with TBI

N = 56

14.8% � APOE e4 genotype

� Haptoglobin (Hp) concentration/ph

� Hp phenotype was determined in p

collected frozen samples for 25 addit

and 32 no PTS subjects

Military personnel

N = 1600

14–15% � Methylenetetrahydrofolate reducta

� 1357 (85%) subjects successfully ge

MTHFR C677T & 1319 (82%) for MTH

Note: PTS, post-traumatic seizures; PTE, post-traumatic epilepsy; GCS, Glasgow coma s

computed tomographic.
neuronal excitability, which effectively decreases the threshold for
seizures [30]. Neuroinflammation remains elevated well past 8 days
in severe TBI, which may account in part for the development of late
onset seizures [31].

In addition, the presence of early seizures may predispose
individuals to the development of late PTE [22]. Young children are
more prone to early seizures, and adolescents and adults to late
seizures [22]. Older age may also increase the risk for PTE
[28]. Gender overall does not appear to influence risk for PTE,
although females may have a higher risk for PTE after milder
injuries compared to males [32]. Warfighters are especially
susceptible to the development of PTE [2].

Recent evidence from genetic association studies supports
the view that certain genetic variants may also increase the risk
for PTE (Table 1). Positive findings in these studies are currently
preliminary. They have yet to be confirmed in separate studies or in
different populations of patients with PTE. For instance, in patients
BI.

Major findings Reference

� GRIN2A rs11074504 and GAD2 rs1330582

associated with PTE

� No significant difference after multi-

comparison

[34]

� rs3766553 & rs10920573 associated with PTS

� Subjects with two variants have a 46.7%

chance of late PTS

� For rs3766553, AA genotype: increased early

PTS

� GG genotype: increased late onset PTS

� For rs10920573, CT genotype: increased late

PTS

[84]

� No significant associations for GAD2

� For GAD1, rs3828275: increased risk for early

PTS

� rs769391 and rs3791878: late onset PTS

� Both risk variants increased risk of PTS

[85]

� APOE e4 allele relative risk is 2.41 for late

onset PTS

� APOE e4 not associated with functional

outcome or development of early PTS

[33]

� No increased risk of PTE in APOE e4 positive

individuals

� Odds ratio of a suboptimal outcome was

13.93 with allele

� Only 3.7% (1/27) with the allele had good

functional outcome vs. 31.0% (13/42) without

allelle

[86]

� No significant associations

� 2 out of 4 with the E4/E4 genotype had late/

delayed onset PTS

[87]

enotype

reviously

ional PTS

� No significant associations for Hp

concentration

� APOE was not related to neuro-outcome

� After adjusting for differences in educational

levels, APOE e4 subjects did worse especially on

verbal intellectual and verbal memory skills

[88]

se (MTHFR)

notyped for

FR A1298C

� For C677T, the odds of PTE was 1.81 for the TT

vs. CC genotype

� Risks stronger in patients with repeated

injuries

� No relationship between A1298C genotype &

PTE

[89]

cale; APOE e4, apolipoprotein E epsilon 4; GAD, glutamic acid decarboxylase; CT,
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with moderate or severe TBI (N = 106), the apolipoprotein E epsilon
4 (APOE e4) allele was associated with a 2.4-fold increased risk of
late PTS [33]. However, no significant associations were found in
Vietnam War veterans with brain injury (N = 199) [34]. Mixed
results have been obtained for APOE e4 and GAD as outlined in
Table 1. Additional genetic studies may provide further insights
into the pathophysiology of PTE and guide the development of
better treatments for PTE. The studies must be sufficiently
powered and ideally prospective in nature.

3. Current treatment options

PTE has been shown to cause secondary damage to the brain.
The seizure activity can cause hypoxia, increased intracranial
pressure, cerebral edema, intracerebral hemorrhage, increased
metabolic demand within the brain, and glutamate excitotoxicity
[35]. In order to prevent permanent neurological sequela, current
treatment of neurotrauma with regards to seizure development
falls into one of two categories: prophylaxis for acute seizure or
management of PTE, both of which have focused on the use of anti-
epileptic drugs (AEDs). To decrease the incidence of seizures post-
trauma, the majority of clinicians are prescribing prophylactic
medications for patients following head injury [35]. Prophylaxis is
currently recommended for severe TBI by leading advisory boards
(Brain Trauma Foundation and the American Academy of
Neurology) for the first 7 days [4]. While there is evidence that
these prophylactic anticonvulsants reduce early seizures, there is
no proven benefit for long-term prognosis [36]. Indeed, a meta-
analysis of 10 randomized controlled trials showed a pooled
relative risk reduction of 0.34 for early seizure prevention
indicating that 10 in every 100 patients will be seizure-free from
treatment [37]. On the other hand, no beneficial effects on
mortality or neurological disability were found regarding the
prevention of late-onset seizure. It is also important to note that no
randomized controlled trial has shown that one drug is more
efficacious than another [38] as outlined for phenytoin, carbamaz-
epine, valproate, and phenobarbital (Table 2). Randomized trials
are difficult to perform because all new treatments must be
compared to an already available treatment thereby masking
potential benefit. Despite their similar uses, the available medica-
tions target different pathways. Thus, before prescribing these
medications, consideration of injury severity, patient status, and
side effect profile must be carefully reviewed [39].

3.1. Phenytoin

Phenytoin increases the refractory period and reversibly
inhibits action potentials [40]. In severe TBI, phenytoin has been
found to reduce the incidence of early seizures from 14.2% to 3.6%
[41]. Also, this drug should only be used within the first 48 h
post-trauma because a randomized control trial showed a trend
toward higher mortality when used at later time points [35]. In a
separate study, the use of this anticonvulsant beyond 1 week was
associated with idiosyncratic side effects (Table 2) [37,40]. The
onset of rashes is also suggested with a RR of 1.57 from a recent
Table 2
Current prophylactic treatment options.

Anticonvulsant drug Mechanism 

Phenytoin Stabilize inactive form of sodium channel 

Carbamazepine Stabilize sodium channels in inactive state 

Phenobarbital Activate GABA receptors, inhibit calcium channels 

Valproate Inhibit sodium channels and GABA transaminase,

activate GABA-synthetic enzyme glutamic acid decarbo

alter the conductance of calcium and potassium
meta-analysis [37]. In addition, long-term prophylaxis has not
been shown to improve morbidity, mortality, or PTE develop-
ment with this drug [35]. The current recommendation is early
prophylaxis and acute treatment with each episode of seizure
activity.

3.2. Carbamazepine

Another rarely prescribed medication for prophylaxis is
carbamazepine [40]. One preliminary study has demonstrated
that carbamazepine reduces PTS by 61% [38]. According to a
meta-analysis, early preventive treatment with carbamazepine
showed a RR of 0.96 for reduction in mortality and disability
[37]. This is consistent with other studies demonstrating no
association between early prophylaxis and long-term prognosis.
It is important to note that this medication is associated
with several side effects and is administered intravenously
limiting its use (Table 2) [40]. These adverse reactions must be
carefully considered before administration and monitored
thereafter.

3.3. Valproate

Valproate inhibits GABA transaminase increasing GABA levels
in the synaptic cleft [40]. Studies have demonstrated a similar
efficacy as compared to phenytoin [38]. However, valproate is also
associated with a higher mortality [42]. Potential adverse effects of
valproate are outlined in Table 2 [40]. Despite its efficacy, this
medication cannot be recommended due to increased mortality in
patients with PTS [42].

3.4. Phenobarbital

Phenobarbital is also used for prophylaxis [40]. In decreases
excitatory neurotransmitter release at the synaptic terminal
[43]. This medication has been studied in a randomized controlled
trial to determine its effect on patients with severe head trauma.
Phenobarbital was prescribed at a serum drug concentration of 10–
25 mg/mL 1-month post-trauma for 3 years, and patients were
followed for a 5-year duration [38]. Long-term prophylaxis did not
show a statistically significant reduction in seizure occurrence.
Phenobarbital is also associated with side effects (Table 2) [40]. In
addition, phenobarbital is more likely to be discontinued
compared to other drugs (including carbamazepine, phenytoin,
and valproate) due to its adverse reactions [44]. Due to overall
limited evidence of efficacy in short- and long-term prevention of
seizures as well as numerous adverse effects [44], this anticonvul-
sant should be used only after consideration of other therapeutic
options.

Overall, with the current regimen, prophylaxis immediately
post-injury is effective for reducing early seizures [37]. However,
the use of these medications has not been shown to improve long-
term prognosis. Moreover, they have narrow therapeutic safety
windows, even in patients without brain injury, which may
outweigh the limited beneficial effects.
Adverse reactions

Fever, nystagmus, leukocytosis, rash, hypersensitivity reactions

Aplastic anemia, agranulocytosis, pancytopenia, Stevens Johnson

syndrome, toxic epidermal necrolysis

Dizziness, fatigue, ataxia, aplastic anemia, panmyelopathy

xylase,

Thrombocytopenia, hypofibrinogenemia, pancytopenia
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4. Pre-clinical models

In order to improve treatment options, pre-clinical models
must be designed to understand PTE pathophysiology. Recently,
the neurotrauma field has made a push for the development of
more predictive pre-clinical models of TBI that are consistent,
reproducible, and most importantly, clinically relevant (Table 3).
Pre-clinical TBI models should produce similar mechanisms of
injury and pathologies as seen in human TBI, including generation
of PTE. Over the past decade, the most common pre-clinical model
of PTE is the rat fluid percussion model combined with a PTZ
challenge [45]. Other models include a weight-drop combined
with PTZ [46], controlled cortical impact (CCI) combined with PTZ
[47], and CCI combined with electroconvulsive shock as outlined
in Table 3 [48]. These models have been used to shed light on
novel mechanisms of injury progression leading to seizure. CCI
and fluid percussion are typically invasive, in contrast to closed-
head injury which is more commonly observed in patients
[49]. Blast modeling and weight drop may be more clinically
relevant due to simulation of acceleration/deceleration injury
and contusion respectively.

Few currently used models can induce the natural progression
of PTE without a pharmacologic agent, and require a very severe
injury, or require the animals to be very young, or very old and
therefore more susceptible to PTE [22]. While a model that induces
a natural PTE is ideal, the caveat of increased mortality lies within
models of severe TBI. Several reasons account for the limited ability
to produce natural progression PTE in rodents. The most prominent
reason is lack of detection capabilities. Unlike humans, rodents do
Table 3
Preclinical models of PTE.

Study Species TBI model Severity In

Williams et al., 2006 [90,91] SD rats Ballistics Severe n/

Chrzaszcz et al., 2010 [48] CD1 mice CCI Severe 7 

Hunt et al., 2010 [92] CD1 mice CCI Severe n/

Bolkvadze et al., 2012 [47] C57 mice CCI & lateral FPI Severe 6 

Nichols et al., 2015 [93] Young

SD rats

CCI Severe n/

Statler et al., 2009 [94] Young

SD rats

CCI Severe n/

Hamm et al., 1995 [95] SD rats Central FPI Moderate 24

Mukherjee et al., 2013 [96] C57 mice Lateral FPI Mild 1 

Silva et al., 2013 [15] Wistar rats Lateral FPI Severe 6 

Echegoyen et al., 2009 [75] Wistar rats Lateral FPI Moderate 6 

Bao et al., 2011 [45] SD rats Lateral FPI Moderate 2 

Kharatishvili et al., 2006 [97] SD rats Lateral FPI Severe n/

Zanier et al., 2003 [30] SD rats Lateral FPI Moderate 1 

Kharatishvili et al., 2007 [98] SD rats Lateral FPI Severe 12

Atkins et al., 2010 [66] SD rats Parasagittal FPI Moderate 12

D’Ambrosio et al., 2005 [99] SD rats Parasagittal FPI Severe n/

Golarai et al., 2001 [46] SD rats Weight-drop Mild 15

Nilsson et al., 1994 [91,99] SD rats Weight-drop Moderate n/
not often produce overt signs of seizure-like activity. Therefore
brain imaging or electrical scanning becomes imperative to detect
activity that may not be represented behaviorally. Additionally,
rodents have a shorter lifespan and therefore may not adequately
map the time course necessary for PTE development. In order to
produce robust effects, an injury model that produces severe brain
damage is often utilized.

Thus, while models already exist that exhibit relevant mecha-
nisms of injury and pathologies including PTE, their feasibility for
routine experimental studies is limited due to their associated high
mortality. As such, an optimized PTE model for the future may be
one with a closed-head moderate TBI that could produce a natural
seizure over a shorter duration, but continuous seizure activity
chronically. At the present time, this type of model has not been
established. However, since evidence suggests that blood brain
barrier (BBB) disruption contributes to early seizure onset [50],
incorporation of robust BBB disruption is suggested for future
model development.

Additionally, future assessments of TBI pre-clinical models
should include systematic monitoring of several elements to
facilitate model development and optimization. These include
determining the length of time to seizure onset and continuance of
seizures long-term in such models. Also, assessment of pre-clinical
models could benefit from more uniformity in seizure detection,
with electroencephalogram (EEG) used to determine the number
and type of seizures. Moreover, the use of juvenile rodents may not
be the most clinically relevant when extrapolating to the human
population who typically sustain a TBI. The use of adult rodents
would be beneficial in future studies.
terval Second hit Outcome measures and key findings

a Natural Histology; continued EEG recording

d Electric shock Histology; cognition; minozac prevents

inflammation and seizures in two hit model

a Natural Slice recordings; histology; increased

excitatory postsynaptic current in

hippocampus

mo PTZ 50 mg/kg In vivo recordings; histology; C57/bl6 mice

develop hyperexcitability at different injury

thresholds

a Natural In vivo recordings; slice recordings; enhanced

cortical synaptic bursting

a Natural In vivo recordings; histology; EEG spikes

common several months post-injury

 h Daily PTZ 25 mg/kg Cognition; PTZ kindling does not worsen

cognitive outcomes post-injury

mo PTZ 30 mg/kg Histology; increased seizure susceptibility

wk PTZ 35 mg/kg In vivo recordings; histology; physical exercise

reduces risk of seizures

wk KA 5 mg/kg In vivo recordings; cannabinoid type-1 receptor

antagonist prevents seizures

wk PTZ 30 mg/kg Physiology; histology; seizures worsen

structural damage caused by TBI

a Natural In vivo recordings; histology; 40–50% seizure

occurrence following FPI

h KA 9 mg/kg Glucose metabolism; BBB permeability;

histology; hippocampal activation and loss of

CA3 and CA4 pyramidal neurons

 mo PTZ 25 mg/kg MRI; in vivo recordings; histology; EEG

correlates with changes seen in hippocampi

 wk PTZ 30 mg/kg In vivo recordings; physiology; histology;

hypothermia prevents hippocampal changes

a Natural In vivo recordings; morphology; histology;

progressive hippocampal and temporal cortex

pathology

 wk PTZ 30 mg/kg Slice recordings; histology; mossy fiber

sprouting in dentate gyrus post-injury

a Natural In vivo recordings; microdialysis; physiology;

found increase in aspartate, glutamate, and

glycine
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Additional research into modeling a more clinically relevant TBI
must be undertaken to establish a more natural progression to
seizure onset. Recent PTE modeling has decreased the latency of
epileptogenesis, but not without a secondary insult using seizure
inducing compounds, or electroconvulsive shock [48]. Most PTE
models use PTZ as the pharmacological inducer of seizure, with
other PTE models using kainic acid following TBI [30]. The choice of
which seizure-inducing compound is most relevant depends upon
the mechanism under investigation as outlined in Table 3. PTZ
induces seizures by inhibiting the inhibitory neurotransmitter
GABA (disinhibition), and KA induces seizures by activating the
excitatory neurotransmitter glutamate. KA, for instance, would be
a good secondary insult to use after TBI when investigating NMDA
triggered mechanisms of excitotoxicity. Although these two
compounds are validated within the epilepsy field, the idea of
pharmacological secondary insult after TBI warrants further
investigation. It is currently unknown what triggers late onset
seizures in humans and it may be linked to chronic neuroinflamma-
tion or another idiopathic insult. The second hit model can be used to
establish a mechanistic pathway for seizure progression; but in
order to effectively model PTE pre-clinically increased emphasis
must be placed on subthreshold doses that lower seizure threshold.
Ideally the model will induce full-blown seizure with a subthreshold
pharmacologic intervention or a second-hit of lower intensity.

5. Mechanisms of injury

5.1. Glutamate excitotoxicity

The development of adequate models can help increase
understanding about generation of an epileptic foci acutely
[51]. Animal models have shown that within the first few days
post-injury, disruption of microRNAs facilitates the transition
toward epileptic activity [52]. The disrupted microRNAs exacer-
bate glutamate-mediated excitotoxicity post-injury [53]. The
induction of the glutamate toxicity may be orchestrated through
iron release from damaged blood cells diffusing across a disrupted
BBB [50]. The remaining surviving neurons participate in
functional or structural adaptations, such as axonal sprouting, to
increase the risk for subsequent hyperexcitability [54]. Concurrent
with glutamate changes, a substantial reduction in GABA releasing
interneurons within the hippocampus leads to enhanced disinhi-
bition at early time points post-injury [9].

5.2. Neuroinflammation

Several days after injury, the damaged brain region can initiate
the cell danger response, which consists of a series of injury
cascades that halts normal homeostasis [55]. Part of this response
is dependent on mechanistic target of rapamycin (mTOR)
signaling, which has been suggested to contribute to tissue
damage and continued excitotoxicity [56]. mTOR1c, in particular,
has been implicated in the pathology of PTE [57]. Acute neuroin-
flammation activates Akt, which phosphorylates mTOR and
contributes to cell-death [56]. Further research is needed to
elucidate the long-term effects of mTOR activation.

Another important subacute response is mediated by toll-
ligands and toll-like receptors. Toll-like receptors trigger the innate
immune system and regulate non-NMDA glutamate channels
[58]. Following injury, activation of these toll-like receptors can
contribute to continued glutamate excitotoxicity out to several
weeks [59]. Wang and colleagues showed that toll-like receptors
are upregulated following kainic acid administration [60]. Specifi-
cally, toll-like receptor 4 is associated with temporal lobe seizures
following trauma [61]. Toll-like receptors on glia trigger a robust
gliosis response post-injury [62].
The initial injury cascade is followed by a period of neuroin-
flammation mediated through activated astrocytes and microglia
[63]. Neuroinflammation can last months after injury. Upregula-
tion of phospholipase A2 and lipid metabolism continues to
activate this neuroinflammatory cascade several months post-
injury [64]. Mutations in the Plaur gene, which traditionally
promotes plasmin formation, may make certain individuals more
susceptible to sustained neuroinflammation following injury
[65]. Reducing this inflammation through selective brain cooling
proves promising in preventing late onset seizures in a rodent
model [66]. Recent evidence implicates interleukin 1b as a
cerebral-spinal fluid marker predictive of persistent neuroinflam-
mation seen with PTE [67].

5.3. Tau pathology

Late onset epilepsy several years post-injury has been
associated with tau hyperphosphorylation and neurodegenera-
tion post-injury (Fig. 1) [68]. An imbalance in zinc homeostasis
may contribute to tauopathy in PTE patients. An increase in zinc
levels has been shown to generate reactive oxygen species in
neurons with tau tangles, which may contribute to seizure onset
[69]. TBI also causes disruption in A-type potassium channels
further leading to release of reactive oxygen species and neuronal
damage in the hippocampus [70]. Substantial atrophy of the
surrounding entorhinal and perirhinal cortices is commonly seen
following initial seizure onset [71]. Furthermore, mTOR complex
1 has been implicated in neurodegeneration leading to sustained
seizure activity with increased mossy fiber spreading in the
hippocampus [72]. This pre-clinical data is similar to persistent
gliosis, cavitation, and hippocampal sclerosis in human TBI
patients measured with diffusion tensor tractography [73]. Hip-
pocampal sclerosis is associated with tauopathy in patients with
PTE [68].

5.4. Mechanism summary

At acute time points, glutamate excitotoxicity contributes to
early onset seizure. Over time secondary injury cascades activate
downstream long-term cascades such as mTOR activation and toll-
like receptor upregulation. These subacute changes facilitate the
transition toward PTE. In conjunction with PTE, tauopathy can
develop. Tauopathy can further contribute to seizure generation
enhancing chronic neurodegeneration.

6. Novel targets

Selecting therapeutic compounds that have potential efficacy is
dependent on two important features. Does the compound target
an important pathway linked to seizure progression, and will it
produce limited side effects? Once these questions have been
successfully answered, it will be important to classify the
compound into rescue therapy or preventative treatment. Rescue
therapy reduces the number of seizures once they have started.
Preventative treatments stop seizures from occurring or starting at
extended time points.

While the historical emphasis has been on medical manage-
ment and/or prophylaxis of seizures acutely in the post-trauma
setting, recent studies have shifted focus to the latent period
between the traumatic episode and development of late seizures,
occurring years post-injury [4]. These studies have explored
numerous therapeutic targets ranging from those modulating
neurotransmitters both directly and indirectly (i.e. AEDs), intra-
ceullular signal transduction, cannabinoid receptors, inflamma-
tion, induction of hypothermia, and utility of a ketogenic diet
[4]. The results of these studies have been reviewed extensively



Fig. 1. The initial acute injury (hours–days) following TBI induces glutamate excitability and sclerosis. Reactive oxygen species are generated from the resulting

hyperexcitability, which damage the cell. This process is regulated by microRNAs. At subacute time points (days–weeks) inflammation occurs from activated toll-like

receptors and non-NMDA glutamate receptors. These further insults exacerbate the damage caused by glutamate toxicity and allow free iron to enter the cell. Over time

(months–years) this injury contributes to tau aggregation. Tau interacts with zinc to generate further free radical damage reducing the threshold for late onset seizure.
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elsewhere [4] but in the following paragraphs we will briefly
summarize the findings of these studies.

6.1. Rescue therapies

SR141716A, also known as Rimonabant1 and Acomplia, an
inverse agonist of the cannabinoid CB1 receptor previously
marketed as an appetite modulator, was tested by Echegoyen
and colleagues in pre-clinical studies of seizure threshold post-TBI
[75]. Using a lateral fluid-percussion model and kainate to induce
seizures at 6 weeks post-TBI, the authors evaluated the ability of
SR141716A to modulate the latency to kainate-induced seizures
and the total time spent seizing post-TBI [75]. SR141716A
administration decreased latency to seizure and decreased total
time spent seizing following TBI in comparison to vehicle
treatment [75,76]. No protective effects were observed, however,
when the compound was administered 20 min post-injury
[76]. Despite promising but limited preclinical studies, the
compound was pulled from the market due to elevated rates of
depression and suicidal thoughts.

Minozac, a promising anti-inflammatory agent being developed
for numerous neurological diseases such as Alzheimer’s disease
and multiple sclerosis, has been evaluated post-TBI in pre-clinical
studies and shown to decrease electroconvulsive shock-induced
seizure susceptibility at 1 week post-injury [48]. Whether these
effects will persist at later time points and if this compound will be
evaluated clinically remains to be seen [76]. Regardless, these
preliminary studies show some promise regarding inflammation
as a therapeutic target for seizure development post-TBI.

6.2. Preventative treatments

Due to the frequently suboptimal results associated with AED
use in the management of epilepsy, alternative therapeutic
approaches and techniques have been explored at great lengths.
One of those most commonly discussed in the clinical literature is
the implementation of a ketogenic diet [77]. Ketone bodies have
been shown to have anticonvulsant effects with fasting decreasing
the amount of seizures in patients with epilepsy (Fig. 2) [77]. This
approach was employed by Schwartzkroin and colleagues in a pre-
clinical study addressing fluorothyl-induced seizure susceptibility
following lateral fluid-percussion injury [78]. However, dietary
regimen had no effect on seizure susceptibility in this study when
considering seizure threshold and duration [76].

Another non-pharmacological approach to preventing seizures
post-TBI previously suggested and evaluated in pre-clinical models
is hypothermia. Hypothermia has long been recognized and
evaluated as a potential neuroprotective strategy and in some
cases has been associated with protective behavioral and
biochemical effects, both in pre-clinical and clinical studies of
neural injury. Atkins and colleagues evaluated the ability of
hypothermia to alter PTZ-induced seizures at chronic time points



Fig. 2. Novel treatments of epilepsy are often targeted toward the regulation of GABA and glutamate ligand gated channels as well as voltage gated cation channels. Previously

explored treatments include: inhibition of cannabinoid receptor CB1, ketogenic diets, and regulation of vesicle activity. These treatments warrant further investigation.
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following TBI [66]. The study showed that hypothermia, when
administered starting 30 min post-injury for a total of 4 h, reduced
the number of seizures induced by PTZ as well as mossy fiber
sprouting but had no effect on seizure severity [76].

6.3. Treatment options for drug-resistant PTE

All clinical studies to date have emphasized acute control of
seizures post-injury and have failed to identify any agents that
successfully modulate seizures chronically (at extended time
points post-injury). This is an important consideration because the
relative risk of PTE remains heightened even at a decade post-
injury, in adults and children [4].

In spite of widespread AED development (over 15 third-
generation AEDs since the 1980s), 30–40% of patients experience
unsatisfactory control of seizures [38]. Unsatisfactory control or
medical intractability, is defined as the failure of two pharmaco-
logical agents to control seizures, and is predicted by the presence
of neurologic structural anomalies in the temporal cortex, often
found in PTE [74]. Further research is being conducted to
investigate the protective properties of supplements such as n-
acetyl cysteine and progesterone to treat PTE, but the results are so
far inconclusive [79,80]. In patients failing medical management,
surgical resection may be an option if a seizure focus can be
identified on imaging and/or electrophysiological studies [4]. In
patients that are not deemed surgical candidates for resection,
other management options are available such as placement of a
vagal nerve stimulator [4].

6.4. Future investigation

Future work needs to address the mechanisms involved in the
development of recurrent excitatory networks that have been
documented in pre-clinical and clinical studies alike related to
development of PTE, and the approaches to modulate them.
Focusing on approaches to alter excessive and recurrent dendrite
outgrowth post-trauma may prove advantageous. For this reason,
investigation of molecules and pathways implicated in neuronal
outgrowth and development may be warranted. Of particular
interest is JNK-mediated signaling, which has been implicated
previously not only in pre-clinical and clinical studies related to
epilepsy development but also in neurodegeneration associated
with TBI [81]. Evaluating potential side effects of targeting JNK
pathways must be carefully considered.

As mentioned previously, current therapeutics or AEDs largely
target voltage-gated cation channels (the a subunit in voltage-
gated Na+ channels or T-type voltage-gated Ca2+ channels), or
regulate GABA-mediated signaling. Other therapeutic targets
related to neurotransmission have been identified with improve-
ment in scientific techniques, namely molecular cloning, and may
represent possible targets going forward. This includes numerous
Ca2+ channel subunits and associated proteins. Likewise, other ion
channels (A- and M-type voltage-gated K+ channels) and
ionotropic glutamate receptors may represent other avenues for
therapeutic development. New studies from preclinical models of
epilepsy have discovered a range of additional targets such as G-
protein-coupled receptors (GABAB and metabotropic glutamate
receptors), neurotransmitter transporters (plasma membrane and
vesicular transporters), hyperpolarization-activated cyclic nucleo-
tide-gated cation (HCN) channel subunits, and connexins [82]. Im-
portantly, while the aforementioned targets represent direct
therapeutic approaches at subacute time points, indirect or
upstream signaling pathways may be just as viable. For example,
brain-derived neurotrophic factor (BDNF) has long been recog-
nized as playing a role in synaptogenesis and synaptic modification
but has also been implicated in epileptogenesis [83]. BDNF exerts
an array of effects ranging from gating ion channels to protein
phosphorylation to TrkB-mediated activation of intracellular
second messenger cascades. All of these changes may successfully
modulate functional properties of ion channels [82].

7. Conclusion

PTE continues to remain a serious concern following TBI.
Despite widespread use of AEDs in the first 7 days following
neurotrauma, the prevalence of late-onset seizure has not
decreased in the past century and perhaps most importantly, no
treatment options are available or recommended for prevention of
these delayed seizures. TBI reduces seizure threshold but overall
understanding about progression is not well characterized. In
order to improve treatment options that can prevent late-onset
seizure, clinically relevant pre-clinical models must be developed
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to examine important mechanistic pathways related to seizure
onset. One of the most important pathways warranting further
investigation is glutamate excitotoxicity and subsequent damage
following TBI. Disinhibition of GABA as shown by the PTZ second
hit studies is equally important and should be considered. Another
area requiring focused investigation is the relationship between
seizure activity and neurodegeneration. Despite the complexity of
PTE, novel therapeutics currently being investigated in pre-clinical
settings appears promising. As novel approaches and therapeutics
are carried forward in a transition toward clinical trials, efficacy,
safety, and bioavailability must be carefully considered. Increasing
the overall understanding of PTE will aid in the development of
selective therapeutics for the treatment and prevention of late-
onset seizure in the coming decades.

Key point box

1. Post-traumatic epilepsy is a major concern for traumatic brain
injury patients with no effective treatments for preventing late
onset seizure.

2. Improving pre-clinical models that adequately represent post-
traumatic epilepsy is critical for enhancing our understanding of
injury progression.

3. Novel therapies will likely target pathways that are implicated
in linking acute injury to chronic changes within the brain.
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