
2013 Clinical Practice Guideline on the Evaluation and Management of Adults with Suspected Heparin-Induced Thrombocytopenia (HIT)

L Z

Adam Cuker¹ and Mark A. Crowther² ¹University of Pennsylvania, Philadelphia, PA; ²St. Joseph's Hospital and McMaster University, Hamilton, ON, Canada

Presented by the American Society of Hematology, adapted in part from: Treatment and prevention of heparin-OCIETY OA induced thrombocytopenia: MERICAN American College of Chest **Physicians Evidence-Based Clinical Practice Guidelines** (9th Edition)

I. History and Physical Examination: Evaluating the Clinical Probability of HIT

A. Features of the history and physical examination that support a diagnosis of HIT

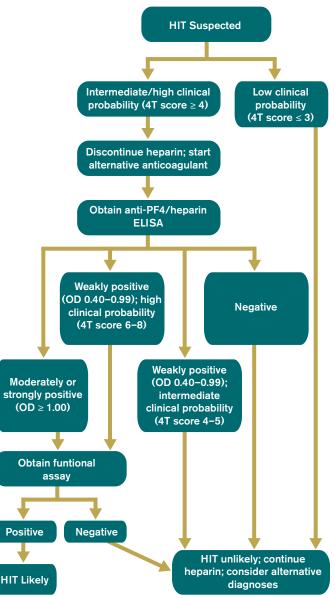
Feature	Comments	
Fall in platelet count ≥ 50%	From highest platelet count after heparin exposure; platelet count fall is 30–50% in 10% of cases	
Fall in platelet count begins 5–14 days after immunizing heparin exposure	Heparin administered during or soon after surgery is more likely to be immunizing	
Fall in platelet count begins within 24 hours after heparin exposure	May occur in patients with previous heparin exposure within last 100 days	
Nadir platelet count ≥ 20 x 10º/L	Nadir may exceed lower limit of normal range (i.e. $150 \times 10^9/L$) in patients with high baseline platelet counts. May be < $20 \times 10^9/L$ in cases associated with DIC	
Venous or arterial thrombosis	Occurring \geq 5 days after heparin exposure and up to 30 days after heparin cessation	
Skin necrosis	At subcutaneous heparin injection sites	
Anaphylactoid reaction	Within 30 minutes after intravenous heparin bolus or subcutaneous injection	
Absence of alternative causes of thrombocytopenia	Such as infection, other medications known to cause thrombocytopenia, cardiopulmonary bypass within previous 96 hours, intra-aortic balloon pump, extracorporeal membrane oxygenation, etc.	
Absence of petechiae and other mucocutaneous bleeding	Adrenal hemorrhage secondary to adrenal vein thrombosis may occur in association with HIT	

B. The 4Ts: A clinical probability scoring system

4Ts	2 Points	1 Point	0 Points
T hrombocytopenia	Platelet count fall > 50% and platelet nadir \ge 20 x 10 ⁹ /L	Platelet count fall 30–50% or platelet nadir 10- 19 x 10 ⁹ /L	Platelet count fall < 30% or platelet nadir < 10 x 10 ⁹ /L
Timing of platelet count fall	Clear onset between days 5−14 or platelet fall ≤ 1 day (prior heparin exposure within 30 days)	Consistent with days 5–14 fall, but not clear (e.g. missing platelet counts) or onset after day 14 or fall \leq 1 day (prior heparin exposure 30–100 days ago)	Platelet count fall ≤ 4 days without recent exposure
Thrombosis or other sequelae New thrombosis (confirmed); skin necrosis at heparin injection sites; anaphylactoid reaction after IV heparin bolus		Progressive or recurrent thrombosis; Non-necrotizing (erythematous) skin lesions; Suspected thrombosis (not confirmed)	None
oTher causes of thrombocytopenia None apparent		Possible	Definite

High probability (6–8 points), intermediate probability (4–5 points), low probability (≤3 points).

Adapted from Lo et al., *J Thromb Haemost* 2006;4:759. The 4Ts has not been compared with intuition-based diagnosis. It may be used as a guide for clinicians but should not substitute for clinical judgment. In a meta-analysis, the negative predictive value of a low probability 4T score was 99.8% (i.e. a low probability score reliably excludes HIT). The positive predictive values of intermediate and high probability scores were 14% and 64%, respectively (Cuker et al., *Blood* 2012;120:4160).


II. Laboratory Diagnosis

Assay category	Mechanism	Examples	Sensi- tivity	Speci- ficity	Comments
Immuno- logic	Detects antibodies against PF4/ heparin, re- gardless of their capac- ity to activate platelets	 Polyspeci- fic ELISA IgG- specific ELISA PaGIA 	>95%	50– 89%	OD of ELISA result cor- relates with clinical prob- ability of HIT and odds of a positive func- tional assay
Functional	Detects an- tibodies that induce hepa- rin-dependent platelet acti- vation	1. SRA 2. HIPA	90– 98%	90– 95%	Not widely available; re- quires referral to a reference laboratory

PF4, platelet factor 4; PaGIA, particle gel immunoassay; OD, optical density; SRA, serotonin release assay; HIPA, heparin-induced platelet activation assay.

III. Diagnostic and Initial Treatment Algorithm

Adapted from Cuker et al., Blood 2012;119:2209. OD, optical density.

IV. Treatment

A. Non-heparin anticoagulants: selection, dosing, and monitoring

Agent	Initial dosing	Monitoring	
Argatroban	Bolus: None Continuous infusion: Normal organ function→2 mcg/ kg/min ¹ Liver dysfunction (total serum bilirubin >1.5 mg/dL), heart failure, post-cardiac surgery, anasarca→0.5–1.2 mcg/kg/min ²	Adjust dose to APTT of 1.5–3.0 times patient baseline. Monitor APTT every 4 hours during dose titration.	
Danaparoid ³	Bolus: Weight <60 kg→1500 U Weight 60-75 kg→2250 U Weight 75-90 kg→3700 U Weight >90 kg→3750 U Accelerated initial infusion: 400 U/hr x 4 hrs, then 300 U/ hr x 4 hrs Maintenance infusion: Cr < 2.5 mg/dL→200 U/hr Cr ≥ 2.5 mg/dL→150 U/hr	Adjust dose to danaparoid- specific anti-Xa level of 0.5– 0.8 U/ml (if assay is available).	
Bivalirudin ⁴	Bolus: None Continuous infusion: Normal organ function→0.15 mg/kg/hr Renal or hepatic insufficiency→dose reduction may be necessary	Adjust dose to APTT of 1.5– 2.5 times patient baseline.	
Fondaparinux ⁵	<50 kg→5 mg SC daily 50-100 kg→75 mg SC daily >100 kg→10 mg SC daily Cl _c , 30–50 ml/min→use caution Cl _c , <30 ml/ min→contraindicated	Some experts recommend adjusting dose to a peak anti- Xa activity of 1.5 fondaparinux- specific U/ml. Others do not recommend routine monitoring.	
NOACs ⁶	At the time of writing, none of the NOACs (e.g. rivaroxaban, dabigatran, apixaban) had been assessed for treatment of patients with suspected or proven HIT and none had FDA approval for this indication. Until supporting data are available, their use cannot be endorsed.		

The American College of Chest Physicians suggests argatroban or danaparoid over other non-heparin anticoagulants (Grade 2C). Argatroban is preferred in patients with renal insufficiency (Grade 2C) (Linkins et al., *Chest* 2012;141:e495S).

However, other experts believe that fondaparinux is an important treatment option, especially in stable, non-critically ill patients (Cuker et al., *Blood* 2012;119:2209; Warkentin, *Hematology* (Am Soc Hematol Educ Program) 2011;143).

¹Some experts recommend a starting dose of 1 mcg/kg/min in patients with normal organ function.

²Lower than FDA-approved dosing.

³Not available in U.S.

⁴FDA-approved for patients with HIT only during percutaneous coronary intervention. ⁵Not FDA-approved for treatment of HIT; use is based largely on case series and anecdotal experience.

⁶NOACs, novel oral anticoagulants.

B. Transitioning to warfarin

- HIT patients are at risk of venous limb gangrene and skin necrosis during initiation of warfarin.
- Warfarin should not be initiated until platelet count is \ge 150 x 10⁹/L (Grade 1C).
- Initial warfarin dose should be ≤ 5 mg/day. Larger loading doses should be avoided (Grade 1C).
- A parenteral non-heparin anticoagulant should be overlapped with warfarin for ≥ 5 days and until INR has reached intended target (Grade 1C).
- Because argatroban raises the INR, the following steps should be taken when transitioning a patient from argatroban to warfarin: If argatroban dose is ≤ 2 mcg/kg/min and patient has normal hepatic function
 - 1. Stop argatroban when INR on combined argatroban and warfarin is >4
 - 2. Repeat INR in 4-6 hours
 - 3. If INR is <2, restart argatroban
 - 4. Repeat procedure daily until INR \geq 2 is achieved

If argatroban dose is >2 mcg/kg/min and patient has normal hepatic function

- 1. Reduce argatroban dose to 2 mcg/kg/min
- 2. Repeat INR in 4-6 hours
- 3. Stop argatroban when INR on combined argatroban and warfarin is >4
- 4. Repeat INR in 4-6 hours
- 5. If INR is <2, restart argatroban
- 6. Repeat procedure daily until INR \geq 2 is achieved
- An alternative option is to convert from argatroban to fondaparinux, which has minimal effect on the INR, before transitioning to warfarin.

C. Duration of anticoagulation

- Bilateral lower extremity compression ultrasonography may be considered in patients with HIT, whether or not there is clinical evidence of lower-limb DVT, because silent DVT is common and its presence may influence the recommended duration of anticoagulation.
- For patients with HIT-associated thrombosis (i.e. HITT), anticoagulate for a defined course (typically 3 months) as with other provoked thromboses.
- For patients with HIT without thrombosis (i.e. isolated HIT), the optimal duration of anticoagulation is unknown. Because there is an elevated risk of thrombosis extending 2 to 4 weeks after heparin is stopped, anticoagulation for up to 4 weeks should be considered.
- For all patients, anticoagulation management should be based on an individualized risk/benefit assessment.

D. Platelet transfusion

- Due to theoretical risk that platelet transfusion may precipitate thrombosis in HIT, and because patients with HIT do not have a hemorrhagic diathesis, platelet transfusions should not be given to patients with confirmed or strongly suspected HIT except for bleeding or an invasive procedure with a high risk of bleeding (Grade 2C).
- Platelet transfusion may be appropriate in situations of diagnostic uncertainty.

V. Heparin Reexposure in Patients with a History of HIT

A. Cardiac and vascular surgery

In patients with a history of HIT, laboratory testing may be used to determine whether HIT is acute, subacute, or remote and the safety of using intraoperative heparin.

Clinical	Laborato	ory profile	Recommended intraoperative
picture	Platelet count	Immuno- logic assay	anticoagulation ^{1,2}
Remote HIT	Recovered	Negative	1. Use UFH (Grade 2C)
Sub- acute HIT	Recovered	Positive	1. Delay surgery, if possible, until immuno- logic assay becomes negative (Grade 2C) 2. If surgery cannot be delayed, use bivaliru- din (Grade 2C) ³
Acute HIT	Thrombo- cytopenic	Positive	 Delay surgery, if possible, until functional and immunologic assays become negative (Grade 2C) If surgery cannot be delayed, use bivaliru- din (Grade 2C) Case reports suggest that repeated plasmapheresis may transiently reduce HIT antibody levels, allowing brief heparin re- exposure during surgery⁴

¹If heparin is given, it should be limited to the intraoperative setting. If pre- or postoperative anticoagulation is indicated, a non-heparin anticoagulant should be used and heparin exposure scrupulously avoided.

²American College of Chest Physicians Grading System: 1, strong recommendation; 2, weak recommendation; A, based on high quality evidence; B, based on moderate quality evidence; C, based on low quality evidence.

³Small studies suggest UFH may be used for intraoperative anticoagulation in patients with subacute HIT provided that the functional assay has become negative. ⁴Grade 2C per the American Society of Apheresis (Schwartz et al., *J Clin Apheresis* 2013;28:145).

UFH, unfractionated heparin, is an important option in centers where experience with intraoperative bivalirudin is limited.

B. Cardiac catheterization/percutaneous coronary intervention

Clinical	Laboratory profile		Recommended	
picture	Platelet count	lmmunologic assay	intraprocedural anticoagulation ¹	
Remote HIT	Recovered	Negative	 Use bivalirudin (Grade 2B) or argatroban (Grade 2C) If a non-heparin anticoagu- lant is not available, use UFH 	
Subacute HIT	Recovered	Positive	1. Use bivalirudin (Grade 2B) or argatroban (Grade 2C)	
Acute HIT	Thrombocy- topenic	Positive		

¹American College of Chest Physicians Grading System: 1, strong recommendation; 2, weak recommendation; A, based on high quality evidence; B, based on moderate quality evidence; C, based on low quality evidence.

Cover Image: *In vivo* microscopy showing monocytes (in red), platelets (in green), and areas of overlap (in yellow) being incorporated into a growing thrombus in a mouse model of HIT. Courtesy of L. Rauova and M. Poncz, Children's Hospital of Philadelphia.

This document summarizes selected recommendations from: Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (9th Edition).

Guidelines provide the practitioner with clear principles and strategies for quality patient care and do not establish a fixed set of rules that preempt physician judgment.

For further information, please see the complete guidelines on the Chest website at *www.chestjournal.org/content/133/6_suppl/340S.long* or refer to the Practice Guidelines section of the ASH website at *www.hematology.org/practiceguidelines*. You may also contact the ASH Government Affairs, Practice, and Scientific Affairs Department at 202-776-0544.

American Society of Hematology 2021 L Street NW, Suite 900 Washington, DC 20036

www.hematology.org