Arrhythmias

Sarah B. Murthi Department of Surgery University of Maryland Medical School R. Adams Cowley Shock Trauma Center

John T. Promes, MD Department of Surgical Education Orlando Regional Medical Center Orlando, FL 2012 Clinical Congress Presenter Disclosure Slide

Sarah B. Murthi, MD John T. Promes, MD

Nothing To Disclose

AMERICAN COLLEGE OF SURGEONS Inspiring Quality: Highest Standards, Better Outcomes

Overview

- Normal Conduction
- Electrocardiogram (ECG)
- Bradycardia
- Tachyarrythmias
- 2010 American Heart Association Guidelines
- ACLS

ECG

- PR onset of P to onset of QRS
- QRS
- QT interval-start of Q to end of T
- ST-end of S to start of T
- R-R is the ventricular rate
- P-P is the atrial rate

One beat every 5 sq HR is 60 bmp
One beat every sq HR 300 bmp/ so 150 is every other square/100 is every 3rd square

• What is the HR here ?

Activation of the

atria

Activation of the ventricles

Recovery wave

- PR interval-SA node to the venticular muscle - 120-200 ms (3-5 small sq)
- QRS depolarization - < 120 ms (3 sm sq)
- ST elevation
 - Failure or re-polarisation from ischemia

ECG

- Right to Left
- Superior to inferior
- Anterior to posterior (lateral)

ECG

- Bipolar limb leads (I-III, Frontal plane)
 - I RA-LA (right to left)
 - II RA-LL (sup/inf)
 - III LA-LL (sup/inf)
- Augmented unipolar leads (aVR-AVF)
 - aVR RA to LA & LL (rightward)
 - aVL LA to RA & LA (leftward)
 - aVF LL to RA & LA (Inferior)

LEADS I, II, aVL: LATERAL SURFACE of the heart LEADS II, III and aVF: INFERIOR SURFACE LEAD aVR: Right atrium

Sinus Bradycardia

- Normal PR (120-200, 3-5 small squares)
- HR <60 (< 1 every 5 squares)
- Often normal and asymptotic
- Medications (Precedex)
- Vaso-vagal

AV nodal block

- Hyperkalemia, hypermagnesmia, digoxin, bblockers
- 1st degree > (0.2 seconds-one large box)
- Monitor

AV nodal block, 2nd degree

• <u>Type 1</u>-progressive prolongation of the PR interval, until a beat is dropped

- Stable, usually asymptomatic, stop medication

- <u>Type 2</u>-stable PR, beat is randomly dropped
 - Often P:QRS 3-4:1
 - Infranodal conduction disturbance
 - Unstable (Anterior wall MI)
 - Can progress to third degree block

3rd Degree Block

- Complete dissociation of p-wave and QRS
 - P-wave is regular and marches through
 - Q waves can be narrow or complex
 - Anterior and inferior wall MI
 - Often requires permanent pacemaker

Summary and Key Points Bradycardia

- Sinus Bradycardia (HR <60, <1 every 5 lg sqs,)
 Lg sq = 0.2 seconds (5=1 second)
- 1st degree block (stable, PR > 0.2 sec-1 lg sq)
- 2nd Degree Type 1 (p-waves at regular intervals, progressive prolongation until missed QRS)
- 2nd Degree Type 2 (regular p-waves sudden dropped QRS, 3-4:1)

Summary and Key Points Bradycardia

- 3rd Degree: Complete dissociation of the P and QRS waves
- Second Degree Type 2 and 3rd degree, more unstable and can be the presentation of anterior and inferior wall MI

What is this?

Treatment of Bradycardia

• Stable

- Observation, treatment of cause, pacemaker

- Unstable
 - Atropine (0.5 mg bolus, repeat every 3-5 mins)
 - Transcutaneous pacemaker
 - Dopamine/epinepherine
 - Transvenous pacemaker

Bundle Branch Block

- BBB can be an indication of ischemic disease
- If tachycardic they can be confused with malignant rhythms and ischemia

Right Bundle Branch Block

- No RB depolarization
- Right dplz from left
- r-wave before the QRS in V1 (rSR in V1)
- Smaller q wave in V6

QRS

Left Bundle Branch Block

- No LB conduction, depolarizes from the right
- R dplz small Q wave in V1
- Second R wave in V6
- W-wave in V6

Tachycardia Sinus Tachycardia

- HR >100 bpm
- Sinus (narrow regular QRS)
- Re-entry tachycardia, nodal tachycardia
 - HR 120-200, regular rate
 - Younger healthy patients
 - 2 x more common in women
 - Can be wide complex (if conducted back through ventricular tissue)
 - Often stopped with Valsalva

Tachycardia

- Atrial fibrillation
 - Irregular, no p-waves, HR variable
- Atrial Flutter
 - Regular, saw-tooth pattern of p-waves
- Fib and flutter
 - 1-2 % of the population, can be associated with slow conduction, often unstable
- MAT
 - P-waves present and irregular, stable

Treatment

- Correction of electrolyte abnormalities
 K >4.5 Mg >2.5 in patients at high risk
- B-blocker, amiodarone, digoxin (in heart failure patients)
- Calcium channel blockers
- Burst pacing in patients with a pacemaker

Treatment

- Unstable-synchronized cardioversion
 - Consider amiodarone load while/before cardioversion
 - Afib/flutter
 - 120-200 J
 - Narrow and regular (re-entry)
 - consider adenosine 1st
 - 50-100 J

Amiodarone

- Effective in converting both atrial fibrillation and flutter
- Low Tordsades risk
- Not a negative inotropic agent
- Safe in critical illness

Adensoine

- Terminates AV nodal re-entry tachycardia
- Will not terminate afib/flutter, but can slow enough to make diagnosis
- 1st dose 6 mg IV given rapidly
- 2nd dose 12 mg IV

Question

• In a patient with stable, new onset afib, HR (100-110), after correction of electrolytes, is it your practice to: a) Monitor the patient b)Rate control with B-blocker c) Rate control with Calcium Channel Blocker d)Give amiodarone to convert the patient e)Synchronized cardioversion with sedation

Question

- What percentage of your patients who develop afib end-up getting amiodarone a)<15% b)25-50% c) > 50%
- d)>75%

Ventricular Arrhythmias Ventricular Tachycardia

- Wide complex (120 ms (3 small boxes))
- >3 beats, can be stable or unstable
- Morphology different then prior ECG
- Abnormal T-waves
- Usually regular
- Causes: ischemic disease, hypothermia, electrolyte abnormalities

Torsades de Points

- Evolves from an increasingly prolonged QT interval
- Often caused by medications
- Rapid VT, varies in amplitude, twists around a baseline
- Treatment: oxygen, remove inciting medication

Treatment of Ventricular Tachycardia

- Unstable: Synchronized cardioversion , if loss of vital signs ACLS
- Procainimide, amiodarone, sotalol

Ventricular Fibrillation

ACLS Protocol

- Shock Bi-phasic maximum dose (120-200 J)
- <u>2 full minutes of CPR</u>
- Epi, advanced airway, capnopgraphy, check pulse and rhythm
- Shock
- 2 full minutes of CPR
- Amiodarone