Deaths and high-risk trauma patients missed by standard trauma data sources

Craig D. Newgard, MD, MPH, Rongwei Fu, PhD, E. Brooke Lerner, PhD, Mohamud Daya, MD, MS, Dagan Wright, PhD, Jonathan Jui, MD, MPH, N. Clay Mann, PhD, Eileen Bulger, MD, Jerris Hedges, MD, MMM, Lynn Wittwer, MD, David Lehrfeld, MD, and Thomas Rea, MD, MPH, Portland, Oregon

AAST Continuing Medical Education Article

Accreditation Statement

This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education through the joint providership of the American College of Surgeons and the American Association for the Surgery of Trauma. The American College Surgeons is accredited by the ACCME to provide continuing medical education for physicians.

AMA PRA Category 1 Credits™

The American College of Surgeons designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Of the AMA PRA Category 1 Credit $^{\rm TM}$ listed above, a maximum of 1 credit meets the requirements for self-assessment.

Credits can only be claimed online

AMERICAN COLLEGE OF SURGEONS

Inspiring Quality: Highest Standards, Better Outcomes

100+years

Objectives

After reading the featured articles published in the *Journal of Trauma and Acute Care Surgery*, participants should be able to demonstrate increased understanding of the material specific to the article. Objectives for each article are featured at the beginning of each article and online. Test questions are at the end of the article, with a critique and specific location in the article referencing the question topic.

Claiming Credit

To claim credit, please visit the AAST website at http://www.aast.org/ and click on the "e-Learning/MOC" tab. You must read the article, successfully complete the post-test and evaluation. Your CME certificate will be available immediately upon receiving a passing score of 75% or higher on the post-test. Post-tests receiving a score of below 75% will require a retake of the test to receive credit.

System Requirements

The system requirements are as follows: Adobe® Reader 7.0 or above installed; Internet Explorer® 7 and above; Firefox® 3.0 and above, Chrome® 8.0 and above, or Safari™ 4.0 and above.

Questions

If you have any questions, please contact AAST at 800-789-4006. Paper test and evaluations will not be accepted.

Disclosure Information

In accordance with the ACCME Accreditation Criteria, the American College of Surgeons, as the accredited provider of this journal activity, must ensure that anyone in a position to control the content of *J Trauma Acute Care Surg* articles selected for CME credit has disclosed all relevant financial relationships with any commercial interest. Disclosure forms are completed by the editorial staff, associate editors, reviewers, and all authors. The ACCME defines a 'commercial interest' as "any entity producing, marketing, re-selling, or distributing health care goods or services consumed by, or used on, patients." "Relevant" financial relationships are those (in any amount) that may create a conflict of interest and occur within the 12'months preceding and during the time that the individual is engaged in writing the article. All reported conflicts are thoroughly managed in order to ensure any potential bias within the content is eliminated. However, if you'perceive a bias within the article, please report the circumstances on the evaluation form.

Please note we have advised the authors that it is their responsibility to disclose within the article if they are describing the use of a device, product, or drug that is not FDA approved or the off-label use of an approved device, product, or drug or unapproved usage.

Disclosures of Significant Relationships with Relevant Commercial Companies/Organizations by the Editorial Staff

Ernest E. Moore, Editor: PI, research support and shared U.S. patents Haemonetics; PI, research support, TEM Systems, Inc. Ronald V. Maier, Associate editor: consultant, consulting fee, LFB Biotechnologies. Associate editors: David Hoyt and Steven Shackford have nothing to disclose. Editorial staff: Jennifer Crebs, Jo Fields, and Angela Sauaia have nothing to disclose.

Author Disclosures

 $Eileen\ Bulger,\ MD-CSL\ Behring\ and\ ATOX\ Bio-Consultant$

Reviewer Disclosures

The reviewers have nothing to disclose.

Cost

For AAST members and *Journal of Trauma and Acute Care Surgery* subscribers there is no charge to participate in this activity. For those who are not a member or subscriber, the cost for each credit is \$25.

J Trauma Acute Care Surg Volume 83, Number 3 **BACKGROUND:** Trauma registries are used to evaluate and improve trauma care, yet potentially miss certain trauma deaths and high-risk patients.

We estimated the number of missed deaths and high-risk trauma patients using commonly available sources of trauma data and

resulting bias in quality metrics for field trauma triage.

METHODS: This was a preplanned secondary analysis of a population-based prospective cohort of injured patients transported by 44 emer-

gency medical services agencies to 28 hospitals in seven Northwest counties from January 1, 2011 to December 31, 2011 and followed through hospitalization. We used a stratified probability sampling design for 17,633 patients, weighted to represent all 53,487 injured patients transported by emergency medical services. We compared patients meeting National Trauma Data Bank (NTDB) criteria (weighted n = 5,883), all injured patients presenting to major trauma centers (weighted n = 16,859), and all admitted patients (weighted n = 18,433), to the full sample. Outcomes included in-hospital mortality, Injury Severity Score (ISS)

of 16 or higher, and critical resource use within 24 hours.

RESULTS: Among 53,487 injured patients, there were 520 emergency department and in-hospital deaths, 1,745 with ISS of 16 or higher, and

923 requiring early critical resources. Compared to the full cohort, the NTDB cohort missed 62.1% of deaths, 39.2% of patients with ISS of 16 or higher, and 23.8% requiring early critical resources, especially older adults injured by falls and admitted to nontrauma hospitals. The admission cohort missed the fewest patients—23.3% of deaths, 10.5% with an ISS of 16 or higher, and 13.1% requiring early resources. Compared to triage sensitivity in the full cohort (66.2%), sensitivity estimates ranged from 63.6% (all admissions) to 93.4% (NTDB). Compared to triage specificity in the full cohort (87.8%), estimates ranged from

36.4% (NTDB) to 77.3% (all admissions).

CONCLUSION: Common sources of trauma data miss substantial numbers of trauma deaths and high-risk trauma patients and can generate biased

estimates for trauma system quality metrics. (J Trauma Acute Care Surg. 2017;83: 427-437. Copyright © 2017 Wolters Kluwer

Health, Inc. All rights reserved.)

LEVEL OF EVIDENCE: Epidemiologic, level III.

KEY WORDS: Trauma; data; bias; emergency medical services.

rauma registry data are collected by trauma centers to provide a consistent source of detailed injury information, prehospital and in-hospital processes of trauma care, and outcomes. However, most trauma registries only capture a subset of injured patients due to the need to balance the use and accuracy of these data against the resources and costs required to sustain such registries. Upon recognition of the variability in inclusion/ exclusion criteria and content of trauma registries across trauma systems, the National Trauma Data Bank (NTDB) was created to standardize the inclusion criteria and definitions for key variables across registries.² While trauma registries and the NTDB have been extremely important sources of information for quality improvement and research, the number of trauma deaths and high-risk patients missed by these data sources remains unknown. Similarly, whether missed patients create bias in generating trauma system quality metrics is unclear. Understanding these issues could improve interpretation of quality metrics and research using these data sources, as well as guide development of more comprehensive data systems for trauma.

In a recent report from the National Academy of Sciences, the concept of a National Trauma Care System was detailed, including recommendations for development of data systems that capture information across the full trauma patient experience.³ The report describes the inconsistent capture and linkage of prehospital data to emergency department (ED) and inpatient data for trauma patients as one area of focus in building a "learning trauma care system." Because most of the seriously injured patients in civilian trauma systems present through the 9-1-1 system, linking prehospital data to subsequent phases of care is critical in measuring the ability to efficiently concentrate all high-risk patients in major trauma centers and in achieving zero preventable deaths. Metrics such as undertriage (seriously injured patients transported to nontrauma hospitals) and overtriage (patients without serious injuries transported to major trauma centers) are used to assess this ability, with national targets for accuracy. 4 Whether current trauma data systems generate valid estimates for these measures is unclear. Missed patients and systematically biased estimates for trauma system performance may misinform key decision makers and detract from a comprehensive learning trauma care system.

In this study, we conducted a preplanned secondary analysis of a prospective injury cohort transported by 9-1-1 emergency services in seven Northwest counties⁵ to estimate the number of missed trauma deaths and high-risk patients using three commonly available sources of trauma data, compared to

Submitted: April 14, 2017, Accepted: May 14, 2017, Published online: June 9, 2017.

From the Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine (C.D.N., M.D., J.J.), Oregon Health & Science University Portland, Oregon; Department of Public Health and Preventive Medicine (R.F., D.W.), Oregon Health & Science University, Portland, Oregon; Department of Emergency Medicine (E.B.L.), Medical College of Wisconsin, Milwaukee, Wisconsin; Tualatin Valley Fire & Rescue (M.D.), Tualatin, Oregon; Injury and Violence Prevention Section Oregon Health Authority (D.W.), Portland, Oregon; Emergency Medical Services & Trauma Systems (D.W., D.L.), Oregon Health Authority, Portland Oregon; Multnomah County Emergency Medical Services (J. J.), Portland, Oregon; Intermountain Injury Control Research Center, Department of Pediatrics (N.C.M.), University of Utah, Salt Lake City, Utah; Department of Surgery (E.B.), University of Washington, Seattle, Washington; Department of Medicine (J.H.), John A. Burns School of Medicine, University of Hawaii-Manoa, Honolulu, Hawaii; Clark Regional Emergency Services Agency (L.W.), Vancouver, Washington; PeaceHealth Southwest Medical Center (L.W.), Vancouver, Washington; Department of Internal Medicine (T.R.), University of Washington; King County Emergency Medical Services (T.R.), Seattle, Washington.

Findings from this study have not been presented at any national or regional meetings.

Address for reprints: Craig D. Newgard, MD, MPH, Department of Emergency Medicine, Center for Policy and Research in Emergency Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code CR-114, Portland, Oregon 97239–3098; email: newgardc@ohsu.edu.

DOI: 10.1097/TA.0000000000001616

a population-based sample. We also assessed the magnitude of bias in calculating standard field triage accuracy metrics using each of these data sources.

METHODS

Study Design

This was a preplanned secondary analysis of a populationbased, prospective, consecutive patient cohort in seven counties in the Northwestern United States used to validate the national field triage guidelines.⁵ The study was reviewed and approved by institutional review boards in all study sites with a waiver of the requirement for informed consent.

Study Setting

We conducted the study with 44 emergency medical services (EMS) agencies in seven counties in Oregon and Washington from January 1, 2011 through December 31, 2011. The counties represented urban, suburban, rural, and frontier regions. Of 37 nonfederal acute care hospitals in the seven counties, we included 28 hospitals for data collection, representing 83.2% of injured patients transported by EMS in these regions. The hospitals included trauma and nontrauma centers, with varying resource capabilities: five Level I trauma centers (including two children's hospitals); two Level II trauma centers; five Level III trauma hospitals; five Level IV hospitals; and 11 nondesignated hospitals. Trauma centers in these regions are designated by state authorities or verified by the American College of Surgeons Committee on Trauma (ACSCOT). We defined a "major trauma center" as a Level I or II trauma hospital, consistent with ACSCOT guidelines for tertiary trauma care⁴ and local practices within these regions. We matched prehospital to hospital data and tracked patients throughout their hospital stay, including transfers between hospitals. The participating EMS agencies work under close medical direction, use standardized field trauma triage protocols based on national guidelines, and regularly train providers based on updates and revisions to the triage algorithm. The methodology of the parent study has been described in detail elsewhere.⁵

Patient Population and Defining the Cohorts

The primary cohort (Cohort 1) included all injured children and adults in the seven counties transported by EMS. To create a representative sample feasible for chart abstraction at the 28 hospitals, we used a stratified probability sampling design using the following strata: geographic region, triage status, age, and type of receiving hospital.⁵ The sample size for the primary cohort was based on the desired precision of estimates for field triage sensitivity, as detailed previously.⁵ The sampling design provided a population-based out-of-hospital injury cohort, representing the full denominator of injured patients served by EMS for whom the field triage guidelines are routinely applied, regardless of ED or hospital disposition. Interhospital transfers with an initial EMS transport within the seven counties were included in the sample. Deaths in the field and nontransported patients were excluded. Every aspect of the parent study was designed to minimize bias in the estimation of field triage accuracy metrics and identify all high-risk patients in these regions.⁵

Each of the three additional cohorts represents a subcohort of Cohort 1 and is intended to exemplify commonly available

sources of trauma data used for quality assurance and trauma research. The cohorts are listed in order of decreasing sample size and increasing restrictiveness of inclusion/exclusion criteria. Cohort 2 included all patients transported by EMS and admitted to a hospital (including patients transferred between hospitals), reflecting patients captured in administrative hospital discharge databases such as the National Inpatient Sample⁶ and state inpatient discharge databases. Cohort 3 included all injured patients transported by EMS to major trauma centers (Level I or II hospitals). This cohort reflects the injured patient population accessible in major trauma centers, including patients discharged from the ED⁸ and excluded from NTDB inclusion criteria.² Finally, Cohort 4 included all patients transported by EMS to major trauma centers and meeting standard NTDB inclusion/exclusion criteria: International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis code in 800-959.9, except for 905-909.9 (late effects of injury), 910-924.9 (superficial injuries and contusions), and 930-939.9 (foreign bodies), plus admission to a trauma center, in-hospital death (in a trauma center), or transfer to/from a trauma center.² Cohort 4 represents a typical trauma registry population using standardized national criteria.

Variables

We defined triage status (positive vs. negative) using three closely related definitions of field triage: (1) field identification, based on EMS provider use of the national field triage decision scheme; (2) initial hospital destination (major trauma center vs. other hospital); and (3) final hospital destination (major trauma center vs. other hospital), after accounting for interhospital transfers. We triangulated multiple data sources (EMS charts, matched trauma registry records, and matched base hospital phone records) to generate triage status⁵ and minimize misclassification bias. We have used this strategy successfully in previous research. 9,10

We collected multiple out-of-hospital variables from EMS electronic patient care reports, mapped to standardized National EMS Information System definitions. ¹¹ These variables included the following: patients' demographics; initial out-of-hospital physiology (systolic blood pressure [SBP] and Glasgow Coma Scale score); assisted ventilation (bag-valve mask ventilation, supraglottic device, or endotracheal intubation); intravenous line placement; mechanism of injury; air versus ground transport; and initial receiving hospital. We have previously validated the electronic EMS data collection processes used in this study against manually abstracted EMS charts for injured patients. ¹²

Trained data abstractors collected all ED and hospital variables using a standardized data collection form. These variables included the presence and timing of airway management, surgical procedures, blood product transfusion, intensive care unit stay, duration of hospital stay, interhospital transfer, Abbreviated Injury Scale (AIS) scores, ¹³ and in-hospital mortality. For patients transferred between hospitals, we abstracted records at both facilities. To supplement the abstracted hospital data, we matched records from nine trauma registries to the sample. A portion of hospital records was double-abstracted to assure reliable and consistent chart abstraction.⁵

TABLE 1. Characteristics of Injured Patients Transported by EMS in Seven Counties Using Inclusion/Exclusion Criteria for Common Sources of Trauma Data*

	Cohort 1: All Injured Patients Transported by EMS** (Population-Based Full Sample)	Cohort 2: Injured Patients Transported by EMS and Admitted (Hospital Discharge Sample)	Level I/II Trauma Centers	Registry Inclusion Criteria
No. of patients	17,633	7,613	8,440	4,466
Weighted no. of patients	53,487	18,433	16,859	5,883
Patients' characteristics:				
Age, mean	51.6 years	58.2 years	43.4 years	46.6 years
0–14 years	6.6%	4.2%	8.2%	8.3%
15–54 years	48.2%	38.8%	61.5%	54.1%
≥55 years	45.3%	56.9%	30.3%	37.6%
Women	52.0%	53.2%	41.4%	39.2%
Met ≥ 1 field triage criteria, per EMS	13.9%	26.1%	32.0%	69.0%
Mechanism of injury				
Gunshot wound	0.5%	0.8%	1.2%	2.3%
Stabbing	2.5%	2.2%	4.4%	4.1%
Assault	5.0%	2.5%	6.5%	2.6%
Fall	51.7%	61.5%	41.3%	44.3%
Motor vehicle crash	21.6%	17.4%	25.4%	28.2%
Motor vehicle vs. pedestrian	1.1%	0.8%	1.2%	1.5%
Other	17.5%	14.8%	20.0%	17.0%
Out-of-hospital physiology and interventions				
SBP < 90 mm Hg	1.5%	2.2%	2.0%	3.4%
GCS ≤ 8	0.9%	1.6%	2.4%	5.4%
GCS 9-12	4.1%	4.6%	4.6%	6.7%
GCS 13-15	95.0%	93.8%	93.0%	87.9%
Assisted ventilation	1.1%	2.3%	2.8%	7.1%
Helicopter transport from scene	0.2%	0.4%	0.4%	0.9%
Initial hospital destination				
Level I/II	30.8%	34.8%	97.6%	94.5%
Non-Level I/II hospital†	69.2%	65.2%	2.4%	5.5%
Injury severity, resource use, and outcome measures				
ISS, mean	3.1	5.7	4.2	8.8
ISS, 0–8	88.5%	72.5%	82.9%	56.7%
ISS, 9–15	8.2%	19.0%	10.5%	25.3%
ISS, 16–24	2.1%	5.6%	3.9%	10.3%
ISS ≥ 25	1.1%	2.9%	2.8%	7.7%
Early critical resource need‡	1.7%	4.4%	4.6%	11.9%
In-hospital mortality	0.8%	2.2%	1.3%	3.3%

^{*}Cohort 1 included all injured patients transported by EMS to 28 trauma and nontrauma hospitals, intentionally sampled to eliminate selection bias. Cohort 2 included all patients in Cohort 1 who were admitted to the 28 hospitals. Cohort 3 included all patients in Cohort 1 cared for in a Level I or II trauma center (including patients discharged from the ED). Cohort 4 included all patients in Cohort 1 who met the National Trauma Data Bank standardized trauma registry inclusion criteria: ICD9 800–959.9 (excluding 905–909.9 [late effects of injury], 910–924.9 [superficial injuries and contusions], and 930–939.9 [foreign bodies]), with presentation to a Level I or II trauma center and death, admission, or transfer (in or out). Each of the four cohorts included transfer patients, provided they were initially transported by EMS within the seven study counties.

GCS, Glasgow Coma Scale; ISS, Injury Severity Score; SBP, systolic blood pressure. Out-of-hospital assisted ventilation included bag-valve mask ventilation, intubation, supraglottic airway placement, and cricothyrotomy.

^{**}Estimates from Reference #3: Newgard CD, Fu R, Zive D, et al. Prospective validation of the National Field Triage Guidelines for Identifying Seriously Injured Persons. J Am Coll Surg. 2016;222(2):146–158.

[†]Non-Level I/II hospitals included Level III and IV trauma hospitals, as well as nontrauma centers.

[‡]Early critical resource need was defined as any of the following within 24 hours of arrival at the ED: emergent intubation in the ED; major nonorthopedic surgery (brain, spine, neck, thorax, abdominal-pelvic, or vascular surgery); interventional radiology procedures; packed red blood cell transfusion ≥ 6 units (or any transfusion in a child); or death.

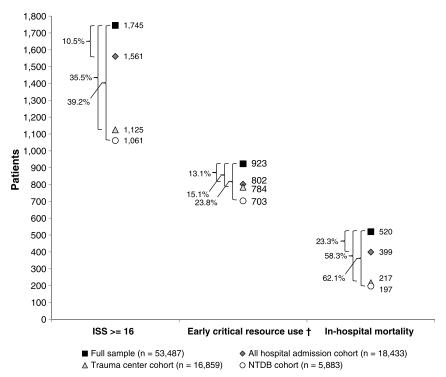


Figure 1. Number of trauma deaths and high-risk patients transported by *EMS* and captured using common trauma data sources. *Cohort 1 included all injured patients transported by *EMS* to 28 trauma and nontrauma hospitals, intentionally sampled to eliminate selection bias. Cohort 2 included all patients in Cohort 1 who were admitted to the 28 hospitals. Cohort 3 included all patients in Cohort 1 cared for in a Level I or II trauma center (including patients discharged from the *ED*). Cohort 4 included all patients in Cohort 1 who met the National Trauma Data Bank standardized trauma registry inclusion criteria: *ICD9* 800–959.9 (excluding 905–909.9 [late effects of injury], 910–924.9 [superficial injuries and contusions], and 930–939.9 [foreign bodies]), with presentation to a Level I or II trauma center and death, admission, or transfer (in or out).² Each of the four cohorts included transfer patients, provided they were initially transported by *EMS* within the seven study counties. †Early critical resource need was defined as any of the following within 24 hours of arrival at the *ED*: emergent intubation in the *ED*; major nonorthopedic surgery (brain, spine, neck, thorax, abdominal-pelvic or vascular surgery); interventional radiology procedures; packed red blood cell transfusion ≥ 6 units (or any transfusion in a child); or death.

Outcomes

We used all in-hospital (ED and inpatient) deaths and defined "high-risk" trauma patients as Injury Severity Score (ISS) of 16 or higher or early critical resource use. Injury Severity Score of 16 or higher is generated from AIS values, ¹³ is recommended by ACSCOT for tracking triage accuracy within trauma systems, 4 and identifies the subset of injured patients at high risk of mortality¹⁴ and most likely to benefit from care in major trauma centers. 15,16 We defined early critical resource use as any of the following within 24 hours of ED arrival: emergent intubation in the ED, major nonorthopedic surgical intervention, interventional radiology procedures, blood transfusion 6 units or more (or any blood transfusion in a child) or death. This definition is based on previous trauma triage research, ¹⁷ a national consensus study defining trauma center "need" 23 and a five-member advisory committee of trauma and EMS experts used for the parent study.⁵

Statistical Analysis

We used descriptive statistics to characterize each of the cohorts. Sample strata and probability weights were incorporated in all analyses. Because the probability sample was designed to represent the full cohort of injured patients

transported by EMS in the seven counties (n = 53,487), all absolute numbers are presented as weighted numbers to assure consistent, comparable estimates between cohorts. We considered the primary cohort to provide the most comprehensive and least biased estimates for trauma deaths, high-risk trauma patients, and accuracy measures for field triage based on comprehensive patient sampling⁵ and previous retrospective research. ^{9,12}

To minimize bias and preserve study power, we used multiple imputation for missing values.^{24,25} We have demonstrated the validity and rigor of using multiple imputation to handle missing trauma and EMS data.^{9,26,27} We used flexible chains regression models for multiple imputation²⁸ with generation of 10 multiply imputed data sets using IVEware (Institute for Social Research, University of Michigan, MI). All estimates and confidence intervals were generated using Rubin's rules to appropriately account for variance within and between data sets.²⁵

We used SAS v.9.3 (SAS Institute Inc., Cary, NC) for database management and all statistical analyses.

RESULTS

During the 12-month period, 67,047 injured patients were evaluated by EMS, of which 53,487 (79.8%) were transported

to acute care hospitals, 158 (0.2%) died in the field, and 13,402 (20.0%) were not transported to acute care hospitals. Cohort 1 (primary cohort) included a probability sample of 17,633 injured patients transported to 28 hospitals (78.9% in-hospital follow-up), weighted to represent the 53,487 transported patients. Compared to the primary cohort, each of the three subcohorts differed in sample size, characteristics, injury severity, resource use, and mortality (Table 1). Patients in Cohort 2 (admission cohort) were older, with more falls, higher injury severity, and higher mortality. Patients in Cohort 3 (trauma center cohort) and Cohort 4 (trauma registry cohort) were younger, with more penetrating injury, fewer falls, more severe injuries, greater need for early critical resources, and higher mortality. Compared to Cohort 1 (in-hospital mortality, 0.8%; early critical resource use, 1.7%), Cohorts 2 to 4 had higher estimates for in-hospital mortality (1.3–3.3%) and early critical resource use (4.4–11.9%).

In the full sample of 53,487 injured patients transported by EMS, there were 520 ED and in-hospital deaths, 1,745 with ISS of 16 or higher, and 923 requiring early critical resources. Figure 1 depicts differences in the absolute number of highrisk trauma patients captured in each of the cohorts. Compared to Cohort 1, all subcohorts failed to identify a portion of highrisk trauma patients. Cohort 4 (NTDB criteria) missed the greatest percentage of high-risk patients (62.1% of ED and in-hospital deaths, 39.2% with ISS of 16 or higher, and 23.8% requiring early critical resources), while Cohort 2 (admission cohort) missed the fewest (23.3% of ED and in-hospital deaths, 10.5% of patients with ISS of 16 or higher, and 13.1% with early critical resource use). Figure 1 focuses on patients transported by EMS to a hospital. When deaths in the field (n = 158, 23.3% of 678 total deaths following injury) are included in this assessment, the number of deaths missed in each of the cohorts is further increased.

In Table 2, we characterize trauma deaths and high-risk patients missed by NTDB inclusion/exclusion criteria. Most of the missed patients were older, injured by falls, and cared for outside of major trauma centers. While 29.5% of missed patients with ISS of 16 or higher were transferred, only 5.6% of missed deaths and no missed patients requiring critical early resources were transferred. Ninety-four percent of in-hospital deaths missed by NTDB criteria occurred in nontrauma hospitals, with mean time-to-death of 2.9 days (range, 0–19 days). There was a wide range of primary *ICD9* diagnosis codes, with no single type of injury or illness represented in the majority of missed patients.

In Figure 2*A*, we illustrate differences in field triage *sensitivity* for patients with ISS of 16 or higher between the cohorts. Compared to the previously published estimate for field triage sensitivity for cohort 1 (66.2%; 95% confidence interval [CI], 60.2–71.7%),⁵ subcohort estimates ranged from 63.6% (95% CI, 58.0–68.9%) for admissions to 93.4% (95% CI, 88.6–96.3%) for NTDB patients. For early critical resource use (Fig. 2*B*) and a full cohort triage sensitivity of 80.1% (95% CI, 65.8–89.4%),⁵ subcohort values ranged from 80.6% (95% CI, 64.8–90.4%) for admissions to 95.8% (95% CI, 79.9–99.3%) for NTDB patients. Comparisons of triage sensitivity based on initial hospital and final hospital were similar or more biased compared to the full cohort.

In Figure 3*A*, we demonstrate differences in the *specificity* of field triage between the cohorts. In all subcohorts, specificity was biased toward lower values. Compared to the full cohort triage specificity for ISS of 16 or higher (87.8%; 95% CI, 87.7–88.0%),⁵ specificity in the three subcohorts ranged from 77.3% (95% CI, 75.0–79.5%) for admissions to 36.4% (95% CI, 32.5–40.4%) for NTDB patients. For early critical resource use (Fig. 3*B*), the full cohort specificity estimate was 87.3% (95% CI, 87.1–87.4%),⁵ compared to values ranging from 76.3% (95% CI, 74.0–78.5%) for admissions to 34.5% (95% CI, 30.9–38.3%) for NTDB patients. Differences in triage specificity were more marked when evaluated by initial and final hospital.

DISCUSSION

In this study, we estimate the number of missed deaths and high-risk trauma patients using common sources of trauma data, as well as the magnitude and direction of bias in calculating field triage accuracy measures with these data. Standardized trauma registry criteria (i.e., NTDB criteria) failed to identify a substantial number of deaths and high-risk patients. Using the NTDB cohort, field triage sensitivity appeared high and specificity low, a pattern opposite to estimates generated from the population-based sample.⁵ Our findings call into question the validity of certain system-level performance measures generated using standard trauma registry inclusion criteria. Other potential sources of trauma data (e.g., all hospital admissions or all injured patients presenting to major trauma centers) also missed important trauma patients and yielded biased estimates for field triage, although not to the same extent as the NTDB criteria.

Effective trauma quality assurance processes are contingent on the use of comprehensive, valid, and unbiased data. That is, making hospital- or system-level changes to improve trauma care requires faith that the data used for such purposes are accurate. For trauma systems, trauma registries typically serve as the source of such data. While registry data are generally collected by trained data abstractors and are closely monitored for quality and consistency, there has been less attention to the potential for missed patients and the effect on quality measures. Our results illustrate that standard trauma registry inclusion criteria miss a substantial proportion of important patients and outcomes, particularly for patients transported to nontrauma hospitals. Use of a less restricted cohort from trauma centers did little to improve these estimates. Our findings may help explain some of the variability in published estimates for field triage accuracy, especially from early research suggesting that field triage practices were highly sensitive but nonspecific. 29-31 An important consequence of such biased estimates is the potential to misinform policy decisions at the local, state, and national levels.

Obtaining broad patient capture and unbiased estimates of trauma system performance is time consuming, resource intensive, expensive, and therefore not feasible for most trauma systems. There is an inevitable trade-off between the comprehensiveness of patient sampling (capture) and the resources required to obtain such data. Our results suggest that regional hospital discharge data (e.g., state inpatient data⁷) miss the fewest deaths and high-risk patients while also providing the least biased estimates for field triage sensitivity and (to a lesser extent)

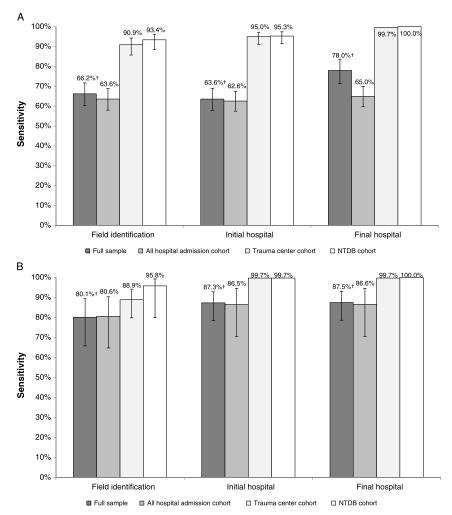


Figure 2. Triage sensitivity calculated using common trauma data sources and a population-based cohort, separated by the three phases of triage (field identification, initial hospital selection, and final hospital destination). (A) Injury Severity Score ≥ 16. (B) Early critical resource use. *Cohort 1 included all injured patients transported by EMS to 28 trauma and nontrauma hospitals, intentionally sampled to eliminate selection bias. Cohort 2 included all patients in Cohort 1 who were admitted to the 28 hospitals. Cohort 3 included all patients in Cohort 1 cared for in a Level I or II trauma center (including patients discharged from the ED). Cohort 4 included all patients in Cohort 1 who met the National Trauma Data Bank standardized trauma registry inclusion criteria: ICD9 800–959.9 (excluding 905–909.9 [late effects of injury], 910–924.9 [superficial injuries and contusions], and 930–939.9 [foreign bodies]), with presentation to a Level I or II trauma center and death, admission, or transfer (in or out). Each of the four cohorts included transfer patients, provided they were initially transported by EMS within the seven study counties. †Estimates from reference #3: Newgard CD, Fu R, Zive D, et al. Prospective validation of the National Field Triage Guidelines for Identifying Seriously Injured Persons. J Am Coll Surg. 2016;222(2): 146–158. ‡Early critical resource need was defined as any of the following within 24 hours of arrival at the emergency department: emergent intubation in the emergency department; major non-orthopedic surgery (brain, spine, neck, thorax, abdominal-pelvic or vascular surgery); interventional radiology procedures; packed red blood cell transfusion ≥ 6 units (or any transfusion in a child); or death.

specificity. However, administrative hospital discharge data sources have limitations, including poor timeliness, requirement for ICD mapping programs to generate injury severity,^{32–34} exclusion of nonadmitted patients (e.g., deaths in the ED), and lack of detail that is provided in trauma registries (e.g., mode of arrival, physiologic information, injury severity coding, etc.).

Characterization of traumatic deaths and high-risk patients missed by standard trauma registry criteria provides important insight for future trauma data systems. Missed patients tended to be older, injured by falls and cared for in non-trauma hospitals. These findings refute the belief that trauma centers and trauma registries capture all high-risk patients in trauma

systems. The findings also highlight an increasing concern about mismatches between patient's need and hospital capability, especially regarding the care of injured older adults. ^{5,10,35–37} While reasons for these mismatches and missed patients remain unclear, they may relate to patient preference, ³⁸ high decision thresholds for transfer from nontrauma centers, ³⁹ hospital-level variability in trauma transfer practices, ^{40,41} end-of-life preferences, financial pressures, provider bias, and initial transport decisions made by EMS. All current trauma data sources missed high-risk trauma patients, yet the all-hospital admission cohort missed the fewest and may offer the least biased perspective on injured patients using existing data sources.

TABLE 2. Characteristics of Trauma Deaths and High-Risk Patients Missed by NTDB Inclusion/Exclusion Criteria*

	ISS ≥ 16	Early Critical Resource Use	In-Hospital Deaths
Weighted no. of	684	220	323
patients			
% missed	39.2%	23.8%	62.1%
Patients' characteristics			
Age, mean	62.8	57.4	77.6
0-14 years	1.5%	2.1%	0.4%
15-54 years	30.2%	41.2%	8.6%
≥55 years	68.2%	56.6%	91.0%
Women	46.3%	47.4%	61.6%
Met ≥ 1 field triage criteria, per EMS	17.4%	20.0%	7.2%
Mechanism of injury			
Gunshot wound	0.5%	1.3%	0.1%
Stabbing	0.9%	8.8%	1.3%
Assault	2.5%	8.0%	0.4%
Fall	67.4%	55.6%	77.3%
Motor vehicle crash	14.5%	11.6%	6.6%
Motor vehicle vs. pedestrian	0.7%	0.3%	0.5%
Other	13.5%	14.4%	13.8%
Out-of-hospital physiology and interventions			
SBP < 90 mm Hg	3.3%	5.6%	5.2%
$GCS \le 8$	3.6%	6.7%	7.4%
GCS, 9-12	6.1%	8.7%	16.6%
GCS, 13-15	90.3%	84.6%	76.0%
Assisted ventilation	2.7%	8.3%	4.9%
Helicopter transport from scene	0.4%	0.7%	0.1%
Initial hospital destination			
Level I/II	8.3%	36.9%	6.0%
Nontrauma center†	91.7%	63.1%	94.0%
Transfer from initial hospital	29.5%	0%	5.6%
Final hospital			
Level I/II	9.4%	36.9%	6.0%
Non-Level I/II hospital*	90.6%	63.1%	94.0%
Hospital measures and outcomes			
ICD9 diseases and injuries tabular index:	Injury and poisoning —80.5%	Injury and poisoning —43.1%	Injury and poisoning —49.3%
	Endocrine, nutritional/ metabolic, and immunity disorders —6.9%	Endocrine, nutritional/ metabolic, and immunity disorders —20.0%	Infectious and parasitic diseases —14.0%
	Circulatory system —4.1%	Nervous system —8.1%	Endocrine, nutritional/ metabolic, and immunity disorders —8.2%

Continued next page

TABLE 2. (Continued)

-			
	ISS ≥ 16	Early Critical Resource Use	In-Hospital Deaths
	Infectious and parasitic diseases —1.8%	Circulatory system—8.0%	Circulatory system —8.2%
	Blood and blood-forming organs—1.8%	Infectious and parasitic diseases—6.9%	Blood and blood- forming organs —7.0%
	Mental disorders —1.8%		Nervous system —7.0%
Top ICD9 diagnoses:	Intracranial injury (ICD9, 850–854) and fracture of skull (<i>ICD9</i> , 800–804)—36.6%	Fracture of lower limb (ICD9 820–829) —16.5%	Septicemia and bacterial infection (ICD9 38–41)—14.0%
	Fracture of neck and trunk (ICD9, 805–809) —21.2%	Malnutrition (ICD9 263.9) —12.3%	Intracranial injury (ICD9 850–854) and Fracture of Skull (ICD9 800–804) —11.7%
	Internal injury of thorax, abdomen, and pelvis (ICD9, 860–869) —10.5%	Disorders of thyroid and other endocrine glands (ICD9, 240–259) —8.2%	Fracture of lower limb (ICD9 820–829) —8.4%
ISS, mean	20.4	7.2	10.9
ISS, 0-8	0%	61.1%	53.4%
ISS, 9-15	0%	25.5%	16.1%
ISS 16-24	77.7%	9.2%	11.4%
ISS ≥ 25	22.3%	4.1%	19.0%
Early critical resource need‡	4.3%	100%	7.0%
Duration of hospital stay-mean	5.8 days	4.5 days	2.9 days
In-hospital mortality	14.4%	10.2%	100%

^{*}Standard trauma registry inclusion criteria were defined based on the National Trauma Data Bank standardized trauma registry inclusion criteria: *ICD9* 800–959.9 (excluding 905–909.9 [late effects of injury], 910–924.9 [superficial injuries and contusions], and 930–939.9 [foreign bodies]), with presentation to a Level I or II trauma center and death, admission, or transfer (in or out).²

Out-of-hospital assisted ventilation included bag-valve mask ventilation, intubation, supraglottic airway placement, and cricothyrotomy.

†Non-Level I/II hospitals included Level III and IV trauma hospitals, as well as nontrauma centers.

‡Early critical resource need was defined as any of the following within 24 hours of arrival at the ED: emergent intubation in the ED; major nonorthopedic surgery (brain, spine, neck, thorax, abdominal-pelvic, or vascular surgery); interventional radiology procedures; packed red blood cell transfusion \geq 6 units (or any transfusion in a child); or death.

There are limitations to consider in this study. We assumed that our primary cohort provided unbiased estimates of field triage accuracy and 100% capture of high-risk trauma patients. While we were careful to design the parent study to ensure broad patient capture and to avoid common sources of bias, it is possible that these estimates were biased if the distribution of patients' characteristics and outcomes at nonparticipating hospitals were different from those at participating hospitals. In addition, this

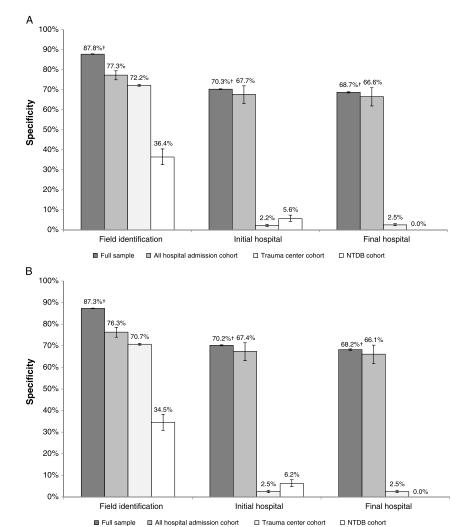


Figure 3. Triage specificity calculated for four trauma cohorts, separated by the three phases of triage (field identification, initial hospital selection, and final hospital destination). (*A*) Injury Severity Score ≥ 16. (*B*) Early critical resource use. *Cohort 1 included all injured patients transported by *EMS* to 28 trauma and nontrauma hospitals, intentionally sampled to eliminate selection bias. Cohort 2 included all patients in Cohort 1 who were admitted to the 28 hospitals. Cohort 3 included all patients in Cohort 1 cared for in a Level I or II trauma center (including patients discharged from the *ED*). Cohort 4 included all patients in Cohort 1 who met the National Trauma Data Bank standardized trauma registry inclusion criteria: *ICD9* 800–959.9 (excluding 905–909.9 [late effects of injury], 910–924.9 [superficial injuries and contusions], and 930–939.9 [foreign bodies]), with presentation to a Level I or II trauma center and death, admission, or transfer (in or out). Each of the four cohorts included transfer patients, provided they were initially transported by *EMS* within the seven study counties. †Estimates from Reference 3, Newgard CD, Fu R, Zive D, et al. Prospective validation of the National Field Triage Guidelines for Identifying Seriously Injured Persons. *J Am Coll Surg.* 2016;222(2):146–158. ‡Early critical resource need was defined as any of the following within 24 hours of arrival at the *ED*: emergent intubation in the *ED*; major nonorthopedic surgery (brain, spine, neck, thorax, abdominal-pelvic or vascular surgery); interventional radiology procedures; packed red blood cell transfusion ≥ 6 units (or any transfusion in a child); or death.

sample did not include injured patients arriving to hospitals outside of the 9-1-1 emergency care system.

These data come from two Northwest states with mature, inclusive trauma systems. Therefore, our estimates may not necessarily reflect other trauma systems. We used *ICD9* discharge diagnose codes to characterize patients missed by trauma registries, which were limited by known diagnoses and the order in which they were listed. In addition, we defined the trauma registry cohort using standardized NTDB inclusion criteria, yet individual hospital registries or state trauma systems

may be broader and more comprehensive than the criteria used for the NTDB.

In summary, commonly used sources of trauma data missed a substantive portion of trauma deaths and high-risk trauma patients, and yielded biased estimates of field triage accuracy. These findings suggest that trauma system quality metrics generated from these data sources are at risk of bias and may yield potentially misleading conclusions. There is an opportunity to optimize future trauma data systems for comprehensive patient capture and accurate quality metrics.

AUTHORSHIP

C.N. and R.F. conceptualized and designed the study. C.N., R.F., M.D., J.J., E.B., L.W., and T.R. collected the data. C.N. and R.F. analyzed the data. C.N., R.F., E.B.L., M.D., D.W., J.J., N.C.M., E.B., J.H., L.W., D.L., and T.R. interpreted the data. C.N. obtained funding for this work. C.N. drafted the manuscript. C.N., R.F., E.B.L., M.D., D.W., J.J., N.C.M., E.B., J.H., L.W., D.L., and T.R. critically revised the manuscript.

ACKNOWLEDGMENT

We acknowledge and thank all the participating EMS agencies, EMS medical directors, hospitals, trauma centers, trauma coordinators, and trauma registrars who supported and helped provide data for this project. We also acknowledge the guidance and oversight by Study Advisory Committee members not already listed as coauthors on this manuscript: Gregory J. Jurkovich, MD, and Nathan Kuppermann, MD, MPH.

DISCLOSURE

The authors declare no conflicts of interest.

This project was supported by the National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, grant # R01CE001837. The study sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Eileen Bulger — CSL Behring and ATOX Bio — consultant fees.

REFERENCES

- Mann NC, Guice K, Cassidy L, Wright D, Koury J. Are statewide trauma registries comparable? Reaching for a national trauma dataset. *Acad Emerg Med*. 2006;13(9):946–953.
- American College of Surgeons National Trauma Data Bank National Trauma Data Standard: data dictionary 2016 admissions. Committee on Trauma, American College of Surgeons. Chicago, IL: 2015.
- National Academy of Sciences, Engineering, and Medicine. A National Trauma Care System: Integrating Military and Civilian Trauma Systems to Achieve Zero Preventable Deaths After Injury. Washington, DC: The National Academies Press; 2016.
- 4. Resources for the Optimal Care of the Injured Patient. Chicago, IL: American College of Surgeons; 2014.
- Newgard CD, Fu R, Zive D, Rea T, Malveau S, Daya M, Jui J, Griffiths DE, Wittwer L, Sahni R, et al. Prospective validation of the National Field Triage Guidelines for Identifying Seriously Injured Persons. *J Am Coll Surg*. 2016;222(2):146–158.
- Overview of the National (Nationwide) Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP). Available at: https://www.hcup-us. ahrq.gov/nisoverview.jsp. Accessed April 7, 2017.
- Overview of the State Inpatient Databases (SID), Healthcare Cost and Utilization Project (HCUP). Available at: https://www.hcup-us.ahrq.gov/sidoverview.jsp. Accessed June 6, 2016.
- Reilly PM, Schwab CW, Kauder DR, Dabrowski GP, Gracias V, Gupta R, Pryor JP, Braslow BM, Kim P, Wiebe DJ. The invisible trauma patient: emergency department discharges. *J Trauma*. 2005;58(4):675–683; discussion 683–675.
- Newgard C, Malveau S, Staudenmayer K, Wang NE, Hsia RY, Mann NC, Holmes JF, Kuppermann N, Haukoos JS, Bulger EM, et al. Evaluating the use of existing data sources, probabilistic linkage, and multiple imputation to build population-based injury databases across phases of trauma care. *Acad Emerg Med*. 2012;19(4):469–480.
- Newgard CD, Zive D, Holmes JF, Bulger EM, Staudenmayer K, Liao M, Rea T, Hsia RY, Wang NE, Fleischman R, et al. A multisite assessment of the American College of Surgeons Committee on Trauma field triage decision scheme for identifying seriously injured children and adults. *J Am Coll Surg.* 2011;213(6):709–721.
- Dawson DE. National Emergency Medical Services Information System (NEMSIS). Prehosp Emerg Care. 2006;10(3):314–316.
- Newgard CD, Zive D, Jui J, Weathers C, Daya M. Electronic versus manual data processing: evaluating the use of electronic health records

- in out-of-hospital clinical research. Acad Emerg Med. 2012;19(2): 217-227.
- Abbreviated Injury Scale (AIS) 2005 Manual. Barrington, IL: Association for the Advancement of Automotive Medicine: 2005.
- Baker SP, O'Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. *J Trauma*. 1974;14(3):187–196.
- MacKenzie EJ, Rivara FP, Jurkovich GJ, Nathens AB, Frey KP, Egleston BL, Salkever DS, Scharfstein DO. A national evaluation of the effect of trauma-center care on mortality. N Engl J Med. 2006;354(4):366–378.
- Mullins RJ, Veum-Stone J, Helfand M, Zimmer-Gembeck M, Hedges JR, Southard PA, Trunkey DD. Outcome of hospitalized injured patients after institution of a trauma system in an urban area. *JAMA*. 1994;271(24): 1919–1924.
- Baxt WG, Jones G, Fortlage D. The trauma triage rule: a new, resource-based approach to the prehospital identification of major trauma victims. *Ann Emerg Med.* 1990;19(12):1401–1406.
- Zechnich AD, Hedges JR, Spackman K, Jui J, Mullins RJ. Applying the trauma triage rule to blunt trauma patients. *Acad Emerg Med.* 1995;2(12): 1043–1052.
- Engum SA, Mitchell MK, Scherer LR, Gomez G, Jacobson L, Solotkin K, Grosfeld JL. Prehospital triage in the injured pediatric patient. *J Pediatr Surg*. 2000;35(1):82–87.
- Newgard CD, Hui SH, Griffin A, Wuerstle M, Pratt F, Lewis RJ. Prospective validation of an out-of-hospital decision rule to identify seriously injured children involved in motor vehicle crashes. *Acad Emerg Med.* 2005;12(8): 679–687.
- Phillips JA, Buchman TG. Optimizing prehospital triage criteria for trauma team alerts. *J Trauma*. 1993;34(1):127–132.
- Henry MC, Hollander JE, Alicandro JM, Cassara G, O'Malley S, Thode HC Jr. Incremental benefit of individual American College of Surgeons trauma triage criteria. Acad Emerg Med. 1996;3(11):992–1000.
- Lerner EB, Willenbring BD, Pirrallo RG, Brasel KJ, Cady CE, Colella MR, Cooper A, Cushman JT, Gourlay DM, Jurkovich GJ, et al. A consensusbased criterion standard for trauma center need. *J Trauma Acute Care Surg*. 2014;76(4):1157–1163.
- 24. Little R, Rubin D. Statistical Analysis with Missing Data. 2 ed. New York: John Wiley & Sons, Inc.; 2002.
- Rubin D. Multiple Imputation for Nonresponse in Surveys. Hoboken, NJ: John Wiley & Sons, Inc.; 1987.
- Newgard CD. The validity of using multiple imputation for missing outof-hospital data in a state trauma registry. *Acad Emerg Med.* 2006;13(3): 314–324.
- Newgard CD, Haukoos JS. Advanced statistics: missing data in clinical research—part 2: multiple imputation. *Acad Emerg Med.* 2007;14(7): 669–678.
- Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. *Survey Methodology*. 2001;27:85–95.
- Lerner EB. Studies evaluating current field triage: 1966–2005. Prehosp Emerg Care. 2006;10(3):303–306.
- West JG, Murdock MA, Baldwin LC, Whalen E. A method for evaluating field triage criteria. J Trauma. 1986;26(7):655–659.
- Norcross ED, Ford DW, Cooper ME, Zone-Smith L, Byrne TK, Yarbrough DR 3rd. Application of American College of Surgeons' field triage guidelines by pre-hospital personnel. J Am Coll Surg. 1995;181(6): 539–544.
- Fleischman RMN, Wang NE, Hsia RY, Rea TD, Liao M, Holmes JF, Newgard CD. Validating the use of ICD9 codes to generate injury severity score: the ICDPIC mapping procedure. [Abstract]. Acad Emerge Med. 2012; 19(4 suppl 1):S314.
- Clark DE OT, Hahn DR. ICDPIC: stata module to provide methods for translating *International Classification of Diseases (Ninth Revision)* Diagnosis Codes into standard injury categories and/or scores. Boston: Boston College, Department of Economics; 2009.
- MacKenzie EJ, Steinwachs DM, Shankar B. Classifying trauma severity based on hospital discharge diagnoses. Validation of an *ICD-9CM* to AIS-85 conversion table. *Med Care*. 1989;27(4):412–422.

- Nakamura Y, Daya M, Bulger EM, Schreiber M, Mackersie R, Hsia RY, Mann NC, Holmes JF, Staudenmayer K, Sturges Z, et al. Evaluating age in the field triage of injured persons. *Ann Emerg Med*. 2012;60(3):335–345.
- Chang DC, Bass RR, Cornwell EE, Mackenzie EJ. Undertriage of elderly trauma patients to state-designated trauma centers. *Arch Surg.* 2008;143(8): 776–781; discussion 782.
- Xiang H, Wheeler KK, Groner JI, Shi J, Haley KJ. Undertriage of major trauma patients in the US emergency departments. Am J Emerg Med. 2014;32(9):997–1004.
- 38. Newgard CD, Mann NC, Hsia RY, Bulger EM, Ma OJ, Staudenmayer K, Haukoos JS, Sahni R, Kuppermann N. Patient choice in the selection of
- hospitals by 9-1-1 emergency medical services providers in trauma systems. *Acad Emerg Med.* 2013;20(9):911–919.
- Mohan D, Rosengart MR, Farris C, Fischhoff B, Angus DC, Barnato AE. Sources of non-compliance with clinical practice guidelines in trauma triage: a decision science study. *Implement Sci.* 2012;7:103.
- Newgard CD, McConnell KJ, Hedges JR. Variability of trauma transfer practices among non-tertiary care hospital emergency departments. *Acad Emerg Med.* 2006;13(7):746–754.
- Sorensen MJ, von Recklinghausen FM, Fulton G, Burchard KW. Secondary overtriage: the burden of unnecessary interfacility transfers in a rural trauma system. *JAMA Surg.* 2013;148(8):763–768.