Penetrating duodenal trauma: A 19-year experience

Thomas J. Schroeppel, MD, Kashif Saleem, MD, John P. Sharpe, MD, MS, Louis J. Magnotti, MD, Jordan A. Weinberg, MD, Peter E. Fischer, MD, MS, Martin A. Croce, MD, and Timothy C. Fabian, MD, Memphis, Tennessee

AAST Continuing Medical Education Article

Accreditation Statement

This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education through the joint providership of the American College of Surgeons and the American Association for the Surgery of Trauma. The American College Surgeons is accredited by the ACCME to provide continuing medical education for physicians.

AMA PRA Category 1 Credits™

The American College of Surgeons designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Of the AMA PRA Category 1 Credit™ listed above, a maximum of 1 credit meets the requirements for self-assessment.

Credits can only be claimed online

AMERICAN COLLEGE OF SURGEONS

Inspiring Quality: Highest Standards, Better Outcomes

100+*years*

Objectives

After reading the featured articles published in the *Journal of Trauma and Acute Care Surgery*, participants should be able to demonstrate increased understanding of the material specific to the article. Objectives for each article are featured at the beginning of each article and online. Test questions are at the end of the article, with a critique and specific location in the article referencing the question topic.

Claiming Credit

To claim credit, please visit the AAST website at http://www.aast.org/ and click on the "e-Learning/MOC" tab. You must read the article, successfully complete the post-test and evaluation. Your CME certificate will be available immediately upon receiving a passing score of 75% or higher on the post-test. Post-tests receiving a score of below 75% will require a retake of the test to receive credit.

Disclosure Information

In accordance with the ACCME Accreditation Criteria, the American College of Surgeons, as the accredited provider of this journal activity, must ensure that anyone in a position to control the content of *J Trauma Acute Care Surg* articles selected for CME credit has disclosed all relevant financial relationships with any commercial interest. Disclosure forms are completed by the editorial staff, associate editors, reviewers, and all authors. The ACCME defines a 'commercial interest' as "any entity producing, marketing, re-selling, or distributing health care goods or services consumed by, or used on, patients." "Relevant" financial relationships are those (in any amount) that may create a conflict of interest and occur within the 12'months preceding and during the time that the individual is engaged in writing the article. All reported conflicts are thoroughly managed in order to ensure any potential bias within the content is eliminated. However, if you'perceive a bias within the article, please report the circumstances on the evaluation form.

Please note we have advised the authors that it is their responsibility to disclose within the article if they are describing the use of a device, product, or drug that is not FDA approved or the off-label use of an approved device, product, or drug or unapproved usage.

Disclosures of Significant Relationships with Relevant Commercial Companies/Organizations by the Editorial Staff

Ernest E. Moore, Editor: PI, research support and shared U.S. patents Haemonetics; PI, research support, TEM Systems, Inc. Ronald V. Maier, Associate editor: consultant, consulting fee, LFB Biotechnologies. Associate editors: David Hoyt and Steven Shackford have nothing to disclose. Editorial staff: Jennifer Crebs, Jo Fields, and Angela Sauaia have nothing to disclose."

Author Disclosures

The authors have nothing to disclose.

Reviewer Disclosures

The reviewers have nothing to disclose.

Cost

For AAST members and *Journal of Trauma and Acute Care Surgery* subscribers there is no charge to participate in this activity. For those who are not a member orsubscriber, the cost for each credit is \$25.

System Requirements

The system requirements are as follows: Adobe® Reader 7.0 or above installed; Internet Explorer® 7 and above; Firefox® 3.0 and above, Chrome® 8.0 and above, or Safari™ 4.0 and above.

Ouestions

If you have any questions, please contact AAST at 800-789-4006. Paper test and evaluations will not be accepted.

Submitted: July 30, 2015, Revised: November 6, 2015, Accepted: November 9, 2015.

From the Department of Surgery (T.J.S., K.S., J.P.S., L.J.M., J.A.W., M.A.C., T.C.F.), University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Surgery (P.E.F.), Carolinas Medical Center, Charlotte, North Carolina.

Address for reprints: Thomas J. Schroeppel, MD, Department of Surgery, 910 Madison Bldg, Ste 220, Memphis, TN 38163; email: tschroep@uthsc.edu.

DOI: 10.1097/TA.00000000000000934

BACKGROUND: Multiple techniques are used for repair in duodenal injury ranging from simple suture repair for low-grade injuries to

pancreaticoduodenectomy for complicated high-grade injuries. Drains, both intraluminal and extraluminal, are placed variably depending on associated injuries and confidence with the repair. It is our contention that a simplified approach to repair will limit complications and mortality. The major complication of duodenal leak (DL) was the outcome used to assess

methods of repair in this study.

METHODS: After early deaths from associated vascular injuries were excluded, patients with a penetrating duodenal injury admitted during a

19-year period ending in 2014 constituted the study population.

RESULTS: A total of 125 patients with penetrating duodenal injuries were included. Overall, the leak rate was 8% with two duodenal-related

mortalities. No differences were seen in patients who had a DL as compared with no leak with respect to demographics, injury severity, or admission variables. Patients with DL were more likely to have a major vascular injury (60% vs. 23%, p = 0.02) and a combined pancreatic injury (70% vs. 31%, p = 0.03). No differences were identified by repair technique, location, or grade

of injury. DLs were more likely to have an extraluminal drain (90% vs. 45%, p = 0.008).

CONCLUSION: Primary suture repair should be the initial approach considered for most injuries. Major vascular injuries and concomintant

pancreatic injuries were associated with most leaks; therefore, adjuncts to repair including intraluminal drainage and pyloric exclusion should be considered on the initial operation. Extraluminal drains should be avoided unless required for associated injuries. (*J Trauma Acute Care Surg.* 2016;80: 461–465. Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.)

LEVEL OF EVIDENCE: Therapeutic/care management study, level IV.

KEY WORDS: Trauma, duodenum, penetrating.

Traumatic injury to the duodenum is uncommon, occurring in less than 5% of abdominal injuries. ¹ The duodenum is located in a protected position in the retroperitoneum; however, it is also adjacent to major systemic and splanchnic vascular structures, biliary structures, and the pancreas. Techniques for repair include simple suture repair, repair and intraluminal decompression, duodenal diverticulization, pyloric exclusion (PE), and pancreaticoduodenectomy for the most destructive injuries. ^{2–5} Contemporary literature emphasizes simple repair of the duodenum, with complicated repairs reserved for more severe injuries. ^{2,6–9} We evaluated our results to repair duodenal injuries over a 19-year study period.

PATIENTS AND METHODS

The study was conducted at the Presley Regional Trauma Center at the Regional Medical Center in Memphis, Tennessee.

Patients were identified by query of the trauma registry for duodenal injuries from January 1, 1996, to December 31, 2014. Injuries were graded based on the American Association for the Surgery of Trauma organ Injury Severity Scale (ISS). To Grade I includes hematoma involving a single portion, partial thickness, no perforation. Grade II includes hematoma involving more than one portion, disruption of less than 50% circumference. Grade III includes disruption of 50% to 75% circumference of D2 or 50% to 100% of D1, D3, or D4. Grade IV includes disruption of 75% of D2 or involving ampulla or distal common bile duct. Grade V includes massive disruption of the duodenal pancreatic complex or devascularization of the duodenum. To

Exclusion criteria included death within 24 hours of admission, blunt mechanism, and injuries (Grade I) that did not require repair. Patients were stratified based on demographics, transfusions, admission blood pressure, admission base deficit, initial repair technique, injury severity, and associated injuries. The primary outcome was duodenal leak (DL) rate. Secondary outcomes included in-hospital mortality, morbidity, and hospital length of stay (LOS).

Definitions

Time to operating room (OR) was defined as the time interval from arrival in the resuscitation room to arrival in the OR.

Major abdominal vascular injuries included injuries to the portal vein, the inferior vena cava, or the aorta. Acute kidney injury was defined as an elevation of 50% from the baseline creatinine. Abscess was defined as any rim enhancing collection seen on contrast-enhanced imaging. Ventilator-associated pneumonia was diagnosed by bronchoalveolar lavage of equal to or greater than 10⁵ colony-forming units per milliliter on quantitative culture of the effluent. DL was defined as operative confirmation of a leak or contrast study showing extravasation from the duodenum.

Statistical Analysis

Statistical comparison was performed comparing DL to no DL using Student's t test for continuous variables and χ^2 or Fisher's exact test for categorical variables where appropriate. All statistical analysis was performed using SAS version 9.2 (SAS Institute, Cary, NC). A p value of less than 0.05 was considered significant.

The University of Tennessee Health Science Center and the Regional Medical Center institutional review boards approved this study.

RESULTS

A total of 212 patients with duodenal injuries were identified during the 19-year study period. Eighty-seven patients were excluded from the analysis (34 blunt injures, 35 because of death in the first 24 hours, and 18 Grade I injuries). Of the remaining 125 patients, the mean age was 31 years, with 90% of them male. Locations of the duodenal injury included 8% in the first portion, 35% in the second, 14% in the third, 17% in the fourth, and 26% had injuries in multiple locations. Overall, the DL rate was 8% with two duodenal-related mortalities.

Comparison of patients with DL with those without yielded no differences in demographics, injury severity, or admission variables (Table 1). Patients with DL were more likely to develop an abscess (50% vs. 17%, p = 0.03). DL patients also had longer LOS and higher mortality, but these differences did not reach significance (Table 2). There were significantly more pancreatic injuries (70% vs. 31%, p = 0.03) and major abdominal vascular injuries in the DL cohort (60% vs. 23%, p = 0.02).

TABLE 1. Demographics and Injury Severity Comparing DL and No DL

	Total	DL	No DL	
	(n = 125)	(n = 10)	(n = 115)	p
Age, y	31 (21–39)	27 (19–42)	32 (21–39)	0.27
Male, %	90	100	89	0.60
ISS	20 (11–25)	23 (17–25)	20 (10–25)	0.42
Transfusions	9.1 (0-10.5)	9.8 (2-28)	9.0 (0-10)	0.88
Admission SBP, mm Hg	119 (96–140)	139 (128–176)	118 (96–140)	0.19
BD	5.1 (7.7–3.4)	4.8 (5.5–2.6)	5.1 (8.0–1.1)	0.88
Time to OR, min	37 (20-42)	38 (22–50)	37 (20-40)	0.94

Continuous variables expressed as median (IQR). Categorical variables expressed as percentage.

BD, base deficit; IQR, interquartile range; transfusions, transfusions in first 24 hours.

No differences were found in injury grade or repair technique between the two groups (Table 3). While no differences in DL rate by repair type were found, patients who developed a DL were more likely to have an extraluminal closed suction drain (90% vs. 45%, p = 0.008). The majority of leaks occurred with injuries in the second portion and 7 of the 10 DLs had associated pancreatic injuries. Patient 6 had a medial wall injury with associated injury to the head of the pancreas that was treated with biliary diversion (cholecystojejunostomy) and drainage. Patient 9 had an associated injury to the head of the pancreas and developed multiple antibodies during transfusions. Ultimately, no blood was available despite a nationwide search. Bovine stabilized hemoglobin-based oxygen carrying solution was given on a compassionate basis, but he succumbed to exsanguination and anemia. Patient 10 had an associated injury to the proximal ureter that resulted in a fistula to the duodenum. This leak healed following operative repair and nephrectomy. The other duodenal-related mortality occurred in Patient 7. An associated pancreatic injury and leak resulted in massive inflammation and eventual mortality related to adult respiratory distress syndrome. The majority of leaks resolved with either initial drains (3 of 10) placed for combined pancreatic injury or operative diversion/ drainage (5 of 10).

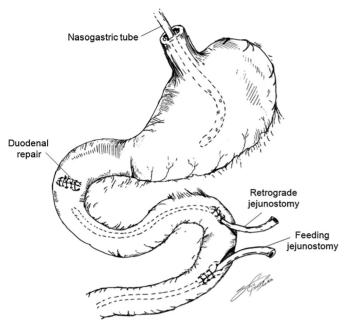
DISCUSSION

Injuries to the duodenum continue to be difficult to manage, with contemporary series reporting cumulative mortality of 16%, morbidity of 40%, and a DL rate of 6.2% (range,

TABLE 2. Outcomes Comparing DL and No DL

	DL	No DL	
	(n = 10)	(n = 115)	p
Abscess (%)	50	17	0.03
Acute Kidney Injury (%)	30	11	0.12
Pneumonia (%)	30	16	0.37
LOS (Days)	48 (33, 72)	25 (10, 31)	0.07
Mortality (%)	20	11	0.34

Continuous variables expressed as median (IQR). Categorical variables expressed as percentage.


TABLE 3. Repair Technique Comparing DL With No DL

		Primary Repair	Afferent/Efferent Tubes	PE	PD
Grade	n	$\frac{1/46}{(2.1\%, p = 0.09)}$	6/63 (9.5%, p = 0.75)	$\frac{3/13}{(23.1\%, p = 0.07)}$	$0/3 \\ (0\%, p = 0.99)$
II	69	35*	32*	2	0
III	49	9	31****	9*	0
IV	4	2	0	2**	0
V	3	0	0	0	3

*Each demonstrates a leak (n = 10). p for comparisons of repair techniques between DL and no DL.

PD, pancreaticoduodenectomy.

0-33%). 1-3,11-18 For penetrating duodenal injuries, many authors are currently recommending primary repair, with more complex repairs reserved for more severe injuries. 2,6,9,15 Our results support that approach. The majority of the patients in the current study underwent primary repair with or without intraluminal drainage with a comparable DL rate of 8%. Controversy still exists in the cohort of patients with more severe injury Grades III to V and injuries located in the second portion (especially medial wall). Reported adjuncts to primary repair include the duodenal "diverticulization" procedure as described by Berne et al.⁴ This approach has been largely abandoned because of the additional length and complexity of the procedure and the removal of healthy tissue. Lateral tube duodenostomy, a component of the "diverticulization" procedure, may be a helpful adjunct after a leak occurs but should not be performed at the initial procedure. PE to divert the luminal contents in tenuous repairs as described by Vaughan et al.⁵ continues to be a viable option. This approach involves primary repair of the injury with opening of the stomach and suture or staple closure of the pylorus followed by a gastrojejunostomy. Several authors have not found any difference in terms of DL rates and actually have associated a higher morbidity with PE. 8,9,15 The results of the current study also did not find any differences between primary suture repair, suture repair with intraluminal drain, or PE. When interpreting the results of the study, Grade II injuries should be repaired primarily without any adjuncts. Intraluminal drains were likely overused during the study period in patients with Grade II injuries. The use of this technique should be limited to tenuous repairs without a "medial wall" component of the second portion in patients with Grade III injuries. Grade III injures involving the first, third, or fourth portions of the duodenum can likely undergo primary repair alone. Second portion injuries with minimal medial wall component can be managed with repair and intraluminal drains. If a significant amount of the medial wall of the second portion is involved, then PE should be performed at the initial operation. Patients with combined pancreatic and duodenal injuries were at high risk for DL in the current study and deserve special consideration. More than two thirds of the leaks in this study were associated with a pancreatic injury. PE at the initial operation should be considered for these combined injuries and injuries with a large "medial wall" component in the second portion. In other injuries to the second portion, triple-tube drainage as described by Stone and Fabian continues to be used as an adjunct

Figure 1. Cartoon demonstrating duodenal repair and triple-tube drainage.

at our institution. Ivatury et al. ¹⁹ have found increased morbidity including complications from the jejunostomy site (obstruction and dislodged tube) and have recommended that this technique be abandoned. However, we believe that decompression of the 2 L to 3 L of bile and pancreatic secretions produced daily reduces the risk for suture line failure; intraluminal pressure is lowered, and these highly digestive materials are contained if a small leak develops. We continue to use the triple-tube technique as our go-to management technique in the absence of a complicated pancreatic head injury or a medial wall component (Fig. 1).

A notable finding of the current study was that most patients who developed a DL had an extraluminal drain. Although often difficult to determine in this retrospective analysis whether the drain was placed for an associated pancreatic injury, hepatic injury, or for a tenuous repair, extraluminal drains were associated with DL. Velmahos et al.²⁰ also noted that finding, with 80% of DL associated with an extraluminal drain. We now believe drains should be avoided unless treating an associated pancreatic injury.

The main limitations of the study include its retrospective nature and the 19-year interval. Changes in practice patterns and advance in other aspects of care could impact the results. Injury location and grade of injury were also variably described in the operative records. Where data were limited in the records, consensus of the authors was used for grade and location, which could impact the accuracy of these classifications.

CONCLUSIONS

Primary suture repair of duodenal injuries should be the initial approach considered in most situations. Adjuncts including intraluminal drainage should be reserved for tenuous repairs primarily for injuries in the second portion without a medial wall

component; PE should be considered at the initial operation in patients with a combined pancreatic head and duodenal injury or a medial wall component in the second portion. Extraluminal drains should be avoided unless treating an associated pancreatic injury. Injury to the duodenum continues to be a challenge to diagnose and treat, but simplifying management can ease decision making and maintain an acceptable DL rate.

AUTHORSHIP

T.J.S. performed the literature search. T.J.S., P.E.F., and T.C.F. provided the study design. T.J.S. and K.S. performed the data collection. T.J.S., P.E.F., J.P.S., L.J.M., J.A.W., M.A.C., and T.C.F. performed the data analysis/interpretation. T.J.S. drafted the manuscript. T.J.S., M.A.C., T.C.F., J.P.S., and L.J.M. provided critical revision/final approval.

ACKNOWLEDGMENT

In memory of Steven Goldberg, MD, an excellent teacher, educator, illustrator, and surgeon, who drafted the figure for this article.

DISCLOSURE

The authors declare no conflicts of interest.

REFERENCES

- Kelly G, Norton L, Moore G, Eiseman B. The continuing challenge of duodenal injuries. J Trauma. 1978;18:160–165.
- Nassoura ZE, Ivatury RR, Simon RJ, Kihtir T, Stahl WM. A prospective reappraisal of primary repair of penetrating duodenal injuries. *Am Surg*. 1994;60:35–39.
- Stone HH, Fabian TC. Management of duodenal wounds. J Trauma. 1979; 19:334–339.
- Berne CJ, Donovan AJ, White EJ, Yellin AE. Duodenal "diverticulization" for duodenal and pancreatic injury. Am J Surg. 1974;127:503–507.
- Vaughan GD 3rd, Frazier OH, Graham DY, Mattox KL, Petmecky FF, Jordan GL Jr. The use of pyloric exclusion in the management of severe duodenal injuries. Am J Surg. 1977;134:785–790.
- Mayberry J, Fabricant L, Anton A, Ham B, Schreiber M, Mullins R. Management of full-thickness duodenal laceration in the damage control era: evolution to primary repair without diversion or decompression. *Am Surg.* 2011;77:681–685.
- Talving P, Nicol AJ, Navsaria PH. Civilian duodenal gunshot wounds: surgical management made simpler. World J Surg. 2006;30:488–494.
- Dubose JJ, Inaba K, Teixeira PG, Shiflett A, Putty B, Green DJ, Plurad D, Demetriades D. Pyloric exclusion in the treatment of severe duodenal injuries: results from the National Trauma Data Bank. *Am Surg.* 2008; 74:925–929.
- Seamon MJ, Pieri PG, Fisher CA, Gaughan J, Santora TA, Pathak AS, Bradley KM, Goldberg AJ. A ten-year retrospective review: does pyloric exclusion improve clinical outcome after penetrating duodenal and combined pancreaticoduodenal injuries? *J Trauma*. 2007;62: 829–833.
- Moore EE, Cogbill TH, Malangoni MA, Jurkovich GJ, Champion HR, Gennarelli TA, McAninch JW, Pachter HL, Shackford SR, Trafton PG. Organ injury scaling, II: pancreas, duodenum, small bowel, colon, and rectum. *J Trauma*. 1990;30:1427–1429.
- Cogbill TH, Moore EE, Feliciano DV, Hoyt DB, Jurkovich GJ, Morris JA, Mucha P Jr, Ross SE, Strutt PJ, Moore FA, et al. Conservative management of duodenal trauma: a multicenter perspective. *J Trauma*. 1990;30:1469–1475.
- 12. Levison MA, Petersen SR, Sheldon GF, Trunkey DD. Duodenal trauma: experience of a trauma center. *J Trauma*. 1984;24:475–480.
- Hasson JE, Stern D, Moss GS. Penetrating duodenal trauma. J Trauma. 1984;24:471–474.
- Snyder WH 3rd, Weigelt JA, Watkins WL, Bietz DS. The surgical management of duodenal trauma. Precepts based on a review of 247 cases. *Arch Surg*. 1980;115:422–429.

- Jansen M, Du Toit DF, Warren BL. Duodenal injuries: surgical management adapted to circumstances. *Injury*. 2002;33:611–615.
- Timaran CH, Martinez O, Ospina JA. Prognostic factors and management of civilian penetrating duodenal trauma. *J Trauma*. 1999;47: 330–335.
- Ordoñez C, García A, Parra MW, Scavo D, Pino LF, Millán M, Badiel M, Sanjuán J, Rodriguez F, Ferrada R, et al. Complex penetrating duodenal injuries: less is better. *J Trauma Acute Care Surg.* 2014;76:1177–1183.
- Velmahos GC, Kamel E, Chan LS, Hanpeter D, Asensio JA, Murray JA, Berne TV, Demetriades D. Complex repair for the management of duodenal injuries. Am Surg. 1999;65:972–975.
- Ivatury RR, Nallathambi M, Gaudino J, Rohman M, Stahl WM. Penetrating duodenal injuries. Analysis of 100 consecutive cases. *Ann Surg.* 1985;202: 153–158
- Velmahos GC, Constantinou C, Kasotakis G. Safety of repair for severe duodenal injuries. World J Surg. 2008;32:7–12.