Infectious Disease PG17: Surgical Critical Care Board Review

Elliott R. Haut, MD, FACS Douglas J.E. Schuerer, MD, FACS

Sep 30, 2012 American College of Surgeons Clinical Congress Chicago, IL

JOHNS HOPKINS

Infectious Disease PG17: Surgical Critical Care Board

Douglas Schuerer, MD, FACS Associate Professor of Surgery Director of Trauma SCC Program Director

2012 Clinical Congress Presenter Disclosure Slide

Douglas Schuerer, MD, FACS

None

AMERICAN COLLEGE OF SURGEONS Inspiring Quality:

Highest Standards, Better Outcomes

Introduction - Topics

- Gram Negative Infections and Double Coverage
- Clostridium Difficile Infections
- Abdominal Infections
- Urinary Tract Infections

• Why might this be useful?

- Resistant Organisms have become more prevalent in many intensive care units
- Good evidence that early appropriate antibiotic therapy reduces mortality
- Early double coverage more likely to cover resistant organism and reduce mortality
- By providing better coverage, theoretic benefit of reducing risk of creating resistance

- Potential Risk of Double Coverage
 - More antibiotics leaves one at higher risk of antibiotic associated diarrhea (C. Diff)
 - Other complications of antibiotic use (renal failure)
 - Creating resistant bacteria by increasing antibiotic exposure

- Community Acquired Infections
 - Low rate of resistant gram infections in most communities
 - If low resistance rate among bacteria, there is little evidence that double coverage of gram – is beneficial

- Health Care Associated Infections
- Mixed Evidence
- Pro Evidence
 - Mostly retrospective studies
 - Beta lactam with aminoglycoside may be better for those with shock and neutropenia, but not overall survival- Meta analysis of RCTs.
 - Comparison of combination therapies

- Con Evidence
 - Meta-analysis of 64 RCT: B lactam with aminoglycoside not beneficial
 - Another Meta-analysis showed benefit only when Pseudomonas present, this review included retrospective studies

- Evidence is clearly mixed, but favors no double coverage.
- What should you do?
 - Many have stopped routine double gram negative
 - Base decisions on unit specific antibiotic resistance and bacterial growth patterns
 - May consider if severe shock or immunosuppression
 - If any double coverage is needed, likely an aminoglycoside is the appropriate choice.

- Diagnosis
- Toxin Assay
 - Most tests are done with this
 - Different toxins A and B
 - Enzyme immunoassay
 - Rapid
 - Miss 30%
- GDH detects antigen –Not specific and used in combination

- Tissue culture
 - Test effects of toxin on human cells
 - More specific but 24 to 48 hours for result
- PCR
 - Newer and becoming more rapid, but expensive
- Toxigenic stool culture
 - Growth of bacteria and search for toxins
 - Gold standard, but takes 2 to 3 days
 - Cannot tell between overgrowth and colonization

- Different tests used per each hospital routine.
- These may have different sensitivities.
- Multiple sequential tests are generally not recommended.

Prevention

- Hand washing with soap and water effective at killing spore
- Alcohol does not kill the spores

Treatment

- Standard regimens
 - Flagyl: PO or IV absorbed if taken PO and delivered through the bloodstream. May not be as good for recurrent infections
 - Vancomycin: PO or rectal
 - 7-14 days depending on severity and if recurrent
- New antibiotics
 - Fidaxomicin
 - Use for treatment failure or recurrence
 - \$2800 for 10 day therapy

Abdominal Infections

- Types
 - Primary
 - Associated with bacterial infection of abdominal fluid
 - Usually ascites or peritoneal dialysis
 - Secondary
 - Primary infection form perforated viscous
 - Appendicitis, perforated ulcer, diverticulitis

Abdominal Infections

Tertiary

 Recurrent infection in those already with surgery for secondary peritonitis

Quaternary

 Severe recurrent infections, fistula, intra-abdominal catastrophe

Location: Organism

- Proximal: If no acid suppression therapy, Gram
 + aerobic (streptococcus)
 - May be different in face of distal obstruction

- Distal
 - Coliforms (E. Coli, Klebsiella)
 - Anaerobes (Bacteroides, Clostridium)

Prophylaxis

- Elective
 - Single agent to cover expected organism, no more than 24 hours, prior to skin incision
- Emergent
 - Single agent to cover expected organism, duration dependent on findings, prior to skin incision

Trauma

- Give prior to skin incision, If less than 12 hours of contamination, no more than 24 hours of therapy
- Necrotizing pancreatitis not indicated

Treatment

Community Acquired: Mild – to – moderate

- Many regimens work, single agent and monotherapy. Cover enteric gram-negative aerobic and facultative bacilli and enteric gram-positive streptococci, anaerobic bacilli distally
- Avoid significant anti-Pseudomonal activity agents for these mild infections
- Avoid Ampicillin-Sulbactam- E. Coli resistance
- Avoid cefotetan and clindamycin due to B frag resistance
- No need for empiric enterococcus nor candida coverage

Treatment – Severe

- Broad spectrum gram negative coverage
- Avoid quinolones with higher resistance of E. Coli
- Empiric coverage of enterococcus
- No need for empiric MRSA nor yeast coverage
- Get cultures and sensitivities, check local antibiogram

Treatment

- Health Care Related
 - Empiric therapy based on local antibiogram
 - Broad expanded spectrum coverage
 - Tailor to culture results
- SIS Guidelines cover this well

Specific Organisms

Antifungal

- Use antifungal if Candida grows
- If C. albicans fluconazole
- Echinocandin if resistant species
- If critically ill, use echinocandin instead of triazole
- Ampho B not recommended as initial therapy

Specific Organisms

Enterococcus/ MRSA

- Treat for faecalis not VREF unless
 immunocompromised
- Empiric coverage in health care associated disease
- Treat if it is isolated
- MRSA coverage if known carrier and prior treatment failure

Duration

- In general no more than seven days
- If proximal may only need 24 hours
- Non complicated appendicitis, less than 24 hours

Urinary Tract Infections

Definitions

- Symptomatic Urinary Tract infection (SUTI)
 - At least 1 of the following signs or symptoms with no other recognized cause:
 - fever (>38°C), suprapubic tenderness, or costovertebral angle pain or tenderness and,
 - a positive urine culture of ≥10⁵ colony-forming units (CFU)/ml with no more than 2 species of microorganisms

ABUTI

- Patient with or without an indwelling urinary catheter has no signs or symptoms (i.e., for any age patient, no fever (>38°C), urgency, frequency, dysuria, suprapubic tenderness, or costovertebral angle pain or tenderness, OR for a patient ≤1 year of age, no fever (>38°C core), hypothermia (<36°C core), apnea, bradycardia, dysuria, lethargy, or vomiting) and
 - A positive urine culture of >10⁵ CFU/ml with no more than 2 species of uropathogen microorganisms and
 - A positive blood culture with at least 1 matching uropathogen microorganism to the urine culture, or at least 2 matching blood cultures drawn on separate occasions if the matching pathogen is a common skin commensal.

CAUTI

Catheter Associated Urinary Tract Infection

 CAUTI if catheter in place at time of symptoms or culture or taken out within 48 hours and the above definitions are true

UTI

Measures

- Reporting of CAUTI and ABUTI to the CDC
- Treated as preventable (never event)

Prevention

- Remove catheters ASAP
- Not always possible in SICU

What to do in your unit?

- Decrease number of indiscriminate urinary cultures sent by team members
- Forbid pan cultures
- Research previous cultures and plan timing of new UTI searches
- Establish protocols for when to obtain U\urinary screens
- Screen for UTI using UA
- Add Foley removal to daily checklist

Thanks for your attention

• Will save questions until after Dr. Haut's presentation.

Infectious Disease PG17: Surgical Critical Care Board Review

Elliott R. Haut, MD, FACS Associate Professor of Surgery & Anesthesiology / Critical Care Medicine & Emergency Medicine

Sep 30, 2012 American College of Surgeons Clinical Congress Chicago, IL

2012 Clinical Congress Presenter Disclosure Slide

Elliott R. Haut, MD, FACS

Lippincott, Williams, & Wilkins Book Royalties as editor of "Avoiding Common ICU Errors"

AMERICAN COLLEGE OF SURGEONS Inspiring Quality: Highest Standards. Better Outcomes

Topics to Cover

- Selective digestive decontamination (SDD)
- Anti-fungal use in the ICU
- Antibiotic resistance patterns & mechanism
- High Yield Infectious Disease Facts
- Antibiotic Classes
- Anti-Fungals
- High Yield Drug Facts

Selective digestive decontamination (SDD)

- Background
 - ICU acquired infections in are important cause of morbidity and mortality with pneumonia being a common infection
 - Some thought that this is causes by aspiration of oral flora and may be prevented by reducing the bacterial load
 - One approach is SDD
- Topical or Systemic antibiotics

Selective digestive decontamination (SDD)

- Cochrane Systematic Review
 - 36 studies involving 6914 ICU patients
 - Does administration of antibiotics prevent the development of respiratory infections?
- 2 routes- systemic and/or topical
- Outcome measures respiratory tract infection (RTI) and mortality

Selective digestive decontamination (SDD)

- Topical vs. systemic antibiotics
 - significant reduction in RTIs
 - (OR 0.28, 95% CI)0.20 to 0.38)
 - significant reduction in total mortality
 - (OR 0.75, 95% CI 0.65 to 0.87)

Selective digestive decontamination (SDD)

- Topical antimicrobials alone (or comparing topical plus systemic versus systemic alone)
 - significant reduction in RTIs
 - (OR 0.44, 95% CI 0.31 to 0.63)
 - NO significant reduction in total mortality
 - (OR 0.97, 95% CI 0.82 to 1.16)

Prophylactic vs. Empiric vs. Preemptive anti-fungal use in the ICU

Prophylactic anti-fungal use in the ICU

- Goal to prevent disease
 - Endorsed for at-risk patients in ICUs with high rates of invasive candidiasis
 - Target patients with ICU LOS >48-72 hours
 - Mostly focuses on candida- most common
 - Most studied drug is Fluconazole
 - At least 15 studies
 - Consistent data- reduces invasive candida infections
 - Some data- reduces mortality

Empiric anti-fungal use in the ICU

- Idea to wait until patient develops signs/symptoms of infection
 - Then add anti-fungal therapy in cases where fungal infection a concern
 - Some suggest this route to avoid widespread exposure to azoles which may lead to resistance
 - Drawback is real since delaying appropriate therapy is associated with higher mortality

Preemptive anti-fungal use in the ICU

- Middle ground between prophylactic and empiric approaches
 - Use early screening tools to detect need for anti-fungal therapy before usual signs and symptoms (such as fever) which are notoriously absent or delayed in the ICU
 - Tests that can be considered
 - Blood tests (i.e. galactomannan)
 - New radiographic finding
 - Positive fungal culture

Antibiotic resistance patterns and mechanisms of resistance

- Factors that drive resistance (WHO)
 - Inadequate commitment to a comprehensive and coordinated response
 - ill defined accountability and engagement
 - Weak or absent surveillance and monitoring
 - Inappropriate and irrational use of antibiotics
 - Poor infection prevention and control practices
 - Depletion of resources and lack of R&D

Antibiotic resistance MRSA Methicillin Resistant S. Aureus

- Now more common in community
- Treat community and healthcare associated differently
 - Community Acquired
 - can use easy cheap, oral drugs
 - Bactrim (trimethoprim sulfa), Clindamycin
- Healthcare Acquired
 - Different resistance pattern, Need "bigger guns"
 - Vancomycin, Linezolid, Daptomycin, Tigecycline, Dalfopristin/Quinupristin (Synercid)

Antibiotic resistance VRE

- Vancomycin-Resistant Enterococci (VRE)
- Two main species E. faecium (most common) and E. faecalis
- Plasmids or transposons contain DNA that confer vancomycin resistance
- Treatment options
 - Daptomycin, Linezolid, Dalfopristin/ Quinupristin (Synercid), Tigecycline, Nitrofurantoin (UTI only)

Antibiotic resistance ESBL

- Extended-spectrum beta-lactamases (ESBL) enzymes
- confer resistance to most beta-lactam antibiotics, including penicillins, cephalosporins, and the monobactam aztreonam
- Associated with poor outcomes
- Treat with carbapenem (imipenem, meropenem, ertapenem)

Antibiotic resistance KPC

- Klebsiella pneumoniae carbapenemase (KPC) producing enzyme
 - Enzymes reside on transmissible plasmids and confer resistance to all beta-lactams
 - KPC can be transmitted from Klebsiella to other bacteria (i.e. E. coli, Pseudomonas aeruginosa, Citrobacter, Salmonella, Serratia, and Enterobacter)
- Carbapenems will not treat the infection
- Drugs to consider- colistin, aztreonam, tigecycline, fosfomycin (for UTI)

High Yield ID Facts: Pneumonia

- Community acquired
 - Most common pathogen in adults is
 Streptococcus pneumoniae (pneumococcus)
 - Atypical pneumonia
 - Legionella, Mycoplasma, Chlamydia
 - Consider empiric coverage with macrolide or respiratory fluoroquinolone
- Pneumocystis jiroveci pneumonia- new name for PCP (Pneumocystis pneumonia)

High Yield ID Facts: Pneumonia

- If use vancomycin, need to dose to get trough levels of 15-20 µg/mL
- Ventilator associated pneumonia
 - 8-day course appropriate for most uncomplicated cases (except pseudomonas)
 - Don't use Daptomycin inactivated by pulmonary surfactants
 - Don't use tigecycline associated with increased risk of death

High Yield ID Facts: Necrotizing soft tissue infections

- The right answer is almost always surgical debridement
- Broad spectrum antibiotic coverage
 - Empiric MRSA coverage dues to high rates of community acquired MSRA
 - Add clindamycin
 - mostly bacteriostatic
 - also prevents toxin production by staphylococci
- Can consider hyperbaric oxygen

High Yield ID Facts: Meningitis

- Make sure drug crosses blood-brain barrier (BBB) into central nervous system (CNS)
- NEVER use Zosyn (Piperacillin and Tazobactam) does not cross BBB
 - Ampicillin does cross BBB
 - Vancomycin only crosses BBB with inflammation so OK to use for meningitis (has meningeal inflammation)

High Yield ID Facts: Bacteremia

- Always need to document clearance (negative blood cultures) for gram positives
- Most (if not all) patients with gram positive bacteremia should get echocardiogram to rule out endocardidits
- Use Duke criteria to diagnose endocarditis

High Yield ID Facts: Open fractures

- 1st generation cephalosporin good for most Grade I and II fractures
- Aminoglycosides useful for Grade III
 and should be dosed daily
- Rarely need anaerobic coverage, but may consider with contamination from likely source (cow pasture).

Some Antibiotic Classes (with examples)

- β-Lactam antibiotics
 - penicillins (amoxicillin, methacillin, oxacillin)
 - cephalosporins (Cephalexin, cefazolin, cefotetan, ceftriaxone)
 - carbapenems (Imipenem, Meropenem, Ertapenem)
 - monobactam (Aztreonam)

Some Antibiotic Classes (with examples)

- Tetracyclines (tetracycline)
- Macrolides
 - Erythromycin, Azithromycin, Clarithromycin
- Aminoglycosides
 - Gentamicin, Tobramycin, Amikacin
- Fluoroquinolones
 - ciprofloxacin, levofloxacin

Some Antibiotic Classes (with examples)

- Cyclic peptides

 Vancomycin, Streptogramins, Polymyxins
- Lincosamides (clindamycin)
- Oxazolidinoes Linezolid (Zyvox)
- Sulfa antibiotics
 - Sulfamethoxazole (usually combined with
 - Trimethoprim)
 - SMX/TMP = Bactrim

Anti-Fungals

- Polyenes
 - Binds to ergosterol in cell membrane and alters permeability
 - Amphotericin B
 - AmBisome (liposomal formulation of amphotericin B)- less toxic form

Anti-Fungals

- Azoles
 - inhibits the fungal cytochrome P450 enzyme which leads to ergosterol synthesis
 - targets fungal cell wall
 - Ketoconazole, Voriconazole, Fluconazole, Itraconazole

Anti-Fungals

- Echinocandins
 - inhibit glucan synthase (another cell wall component)
 - not through P450 system- fewer drug interations
 - Caspofungin, Micafungin, Anidulafungin

High Yield Drug Facts

- Common drugs that cause
 Thromobocytopenia
 - Linezolid, Vancomycin, β-lactams
- Common drugs that lower seizure threshold - β-lactams
- Cefotetan/Clindamycin
 - Both option for abdominal surgery prophylaxis
 - DO NOT use to treat abdominal infection due to high bacteroides fragilis resistance ITHE HOPKING

High Yield Drug Facts

- Colistin (polymyxin E)
 - Bactericidal drug disrupts outer cell membrane of gram-negative rods
 - Currently used for pan-resistant bacteria (i.e. Acenitobacter, Pseudomonas)
 - Major side effects nephrotoxicity and neuotoxicity

High Yield Drug Facts

- Most flouroquinolones (i.e. ciprofloxacin, levofloxacin) are a good choice for UTI since they concentrate in urine – EXCEPT moxifloxacin (does not concentrate in urine)
- DO NOT use echinodandins (i.e. Caspofungin, Micafungin) for fungal UTI since they do not concentrate in urine

Good Luck

