Shock and Hemodynamic Monitoring

Matthew Bank, MD, FACS
Assistant Professor
Hofstra North Shore-LIJ School of Medicine
Director, Surgical Intensive Care Unit
North Shore University Hospital

Shock

- Multiple different strategies for classifying shock, but all forms of shock result in impaired oxygen delivery secondary to either one or both:
 - reduced cardiac output (cardiogenic, septic)
 OR
 - loss of effective intravascular volume
 (hypovolemic, neurogenic, anaphylactic, septic).

- Gram negative septic shock most studied form a shock
 - Lipopolysaccharide (LPS) in bacterial cell wall binds to LPS binding protein.
 - LPS-LBP complex then binds to cell surface CD14 receptors on monocytes and macrophages.
 - The LPS-LBP-CD14 complex then activates cells via Toll-like receptor-4 (TLR4).
 - TLR4 then "activates" cells which produce a cytokine "cascade" of proinflamatory mediators.

- Tumor Necrosis Factor (TNF)
 - First cytokine produced in response to gram negative sepsis
 - Principal mediator for acute response to gram negative bacteria
 - Major source of TNF is from activated macrophages
 - High levels of TNF predict mortality and can cause apoptosis.

- Interleukin-1 (IL-1)
 - Levels of IL-1 increase soon after TNF production in gram negative sepsis (second cytokine to be elevated)
 - IL-1 produced by macrophages, neutrophils and endothelial cells
 - IL-1 increases levels of next proinflammatory cytokines in cascade, IL-2 and IL-12.
 - IL-1 does NOT cause apoptosis

- Interleukin-10
 - Anti-inflammatory cytokine
 - Inhibits production of IL-12
 - Inhibits T-cell activation

Septic Shock – Gram Positive

- Gram positive sepsis
 - Gram positive cell wall components are also known to be involved in septic response
 - Peptidoglycans
 - Teichoic Acid
 - Likely act in a similar manner as LPS, but less potent on a weight bases.
 - Gram positive bacteria also produce exotoxins
 - Act directly with Class II major histocompatibility complex (MHC) on antigen presenting cells and T cell receptors (TCR).

Septic Shock – Treatment (Surviving Sepsis Guidelines)

- Resuscitation (over the first 6 hours)
 - Begin resuscitation immediately in patients with hypotension or elevated lactate.
 - Resuscitation goals:
 - CVP 8-12 (for nonintubated patients)
 - CVP 12-15 (for intubated patients)
 - Mean arterial pressure > 65
 - Urine output > 0.5 cc/kg/hr
 - Central venous oxygen saturation > 70% or mixed venous > 65%

Septic Shock – Treatment (Surviving Sepsis Guidelines)

- Vasopressors
 - Norepinephrine and dopamine are the initial vasopressors of choice
 - Vasopressin (0.03 units/min) can be added to norepinephrine
- Do not use low-dose dopamine for renal protection
- Use Crystalloids or colloids
- Recombinant human activated protein C
 (Drotrecogin alfa (activated)) is NOT
 recommended for treatment of severe sepsis and
 bas been withdrawn from the market

Septic Shock – Treatment (Surviving Sepsis Guidelines)

- Do not use low-dose dopamine for renal protection
- Use Crystalloids or colloids
- Do not increase cardiac index to predetermined supranormal levels
- In patients requiring vasopressors, insert an arterial catheter as soon as practical

Anaphylactic Shock

- Immediate hypersensitivity reaction
- Circulating IgE binds to the antigen causing anaphylaxsis
- Antigen-bound IgE then activates FceRI receptor on mast cells and basophils
- IgE- FceRI complex then mediates degranulation of mast cells and basophils, leading to the release of inflammatory mediators (such as histamine)

Anaphylactic Shock - Treatment

- Immediate supportive care (protect airway, establish IV access, volume resuscitation, etc.)
- Epinephrine is first-line treatment for severe anaphylaxis
 - Can be given IM in the mid-anterolateral thigh
 - Can also be given in nebulized form for laryngeal edema.
- Second-line medications
 - Antihistamines
 - Glucocorticoids
 - Nebulized bronchial dilators

Neurogenic Shock

- Loss of peripheral vasomotor tone secondary to injury to autonomic pathways within the spinal cord.
- Vasodilation below the level of spinal cord injury
- Unopposed vagal stimulation of heart leads to bradycardia

Neurogenic Shock - Treatment

- Treatment
 - Can be poorly fluid responsive
 - Phenylephrine first line vasopressor
 - Atropine for critical bradycardia

Hypovolemic Shock

- Acute loss in intravascular volume leads to poor venous return to heart and decreased diastolic filing pressures. This leads to inadequate stroke volume and cardiac output.
 - Hemorrhage
 - GI losses

Hypovolemic Shock - Treatment

- Replace fluid losses with isotonic fluids and blood products
- Stop acute intravascular volume loss
 - Control sources of hemorrhage
 - Control GI losses
 - Treatment of infectious diarrhea
 - Relief of bowel obstruction

Cardiogenic Shock

- Cardiac output not adequate for metabolic demands of body
 - Myocardial ischemia and infarction (most common).
 - Cardiac tamponade
 - Spontaneous cardiac dysrhythmias.

Cardiogenic Shock - Treatment

Treatment

- Relieve tamponade
- Treat dysrhythmias as per ACLS protocol
- Inotropic agents as tolerated to improve stroke volume
- Decrease afterload if BP allows
- Intraaortic Balloon Pump
 - Decreases afterload during systole
 - Increases coronary artery perfusions during diastole.
- Ventricular assist devices
 - Placed in parallel with ventricle
 - Increases cardiac output
 - Used as a "bridge" to heart transplantation

- All invasive hemodynamic monitoring devices require tubing with a continuous, unobstructed fluid column from tip of catheter to pressure transducer.
 - Pressure transducer needs to be leveled ("zeroed") at appropriate phlebostatic axis.
 - Transducers positioned to low will artificially raise hemodynamic measurements.
 - Transducers positioned to high will artificially lower hemodynamic measurements.

- Overdamped or underdamped systems
 - Overdamped system-
 - attenuated systolic peak, narrow pulse pressure, and widened systolic waveform
 - Artificially lower systolic readings
 - Often from bubbles trapped in tubing
 - Underdamped system-
 - sharp systolic peak, increased pulse pressure, and narrow systolic waveform
 - Artificially raises systolic readings
 - Often from stiff tubing that amplifies waveforms as the incoming waveform approaches the resonant frequency of the tubing system
 - Use MEAN arterial pressure readings

Hemodynamic Monitoring Invasive Arterial

- Invasive Blood Pressure Monitoring
 - Advantages
 - Continuous, instantaneous measurements of SBP, DBP, MAP
 - Ability to easily and repeatedly sample arterial blood
 - Disadvantages
 - SBP increases and DBP decreases the further away the site of measurement is from the aortic root (brachial > radial > femoral)
 - Complications of intraarterial catheters
 - Infection
 - Thrombosis / embolization
 - Arterial injury

- Invasive Intravascular Volume / Cardiac Function Monitoring
 - Central Venous Catheter
 - Advantages
 - » Can measure central venous pressure (CVP) and central venous oxygenation (ScvO2).
 - » CVP used by Surviving Sepsis Guidelines for guiding resuscitation
 - » Shown to improve outcome when used in Early Goal Directed Therapy in the Treatment of Severe Sepsis and Septic Shock[i] based on values of CVP and continuous ScvO2.
- [i] Rivers E, et.al. Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. N Engl J Med 2001; 345:1368-77

- Pulmonary artery catheter
 - Can directly measure pulmonary artery pressures, pulmonary artery occlusion pressure, right ventricular cardiac output, and mixed venous oxygenation.
 - Can indirectly calculate SVR, PVR, CI, oxygen delivery, oxygen consumption
- PA Catheter Controversy
 - Prospective randomized trials have failed to show improvement in mortality with the use of PA catheters in patients with:
 - Shock and ARDS[i]
 - High Risk Surgical Patients[ii]
 - Acute Lung Injury[iii]
 - PA Catheter use decreased by 65% from 1993 to 2004.[iv]
- [i] Richard C, et.al. Early Use of Pulmonary Artery Catheter and Outcomes in Patients with Shock and Acute Respiratory Distress Syndrome. JAMA. 2003; 290(20):2713-20.
- [ii] Sandham JD, et.al. A Randomized, Controlled Trial of the Use of Pulmonary-Artery Catheters in High-Risk Surgical Patients. N Engl J Med 2003; 348:5-14.
- [iii] Pulmonary-Artery versus Central Venous Catheter to Guide Treatment of Acute Lung Injury. N Engl J Med. 2006;354:2213-24.
- [iv] Wiener RS, et.al. Trends in the Use of the Pulmonary Artery Catheter in the United States, 1993-2004. JAMA 2007; 298(4):423-29.

- Arterial Waveform Analysis
 - Stroke volume variation (SVV)
 - SVV = (SVmax SVmin) / SVmean
 - Uses variations in stroke volume cause by changes in intrathoracic pressure during the respiratory cycle.
 - As intravascular volume decreases, stroke volume variation increases.
 - Has been validated in mechanically ventilated patients only.
 - Arrhythmias can dramatically affect SVV